|
Author |
hbghlyj
Posted 2020-1-31 09:48
Last edited by hbghlyj 2020-1-31 21:07第一种.$\frac{3x^4-20x^2+24}{4x^3}$
$x=\sqrt 2+\sqrt 3+\sqrt 5,x^2=10+2(\sqrt6+\sqrt{10}+\sqrt{15})$,令$y=\sqrt6+\sqrt{10}+\sqrt{15}=\frac{x^2-10}2$,$y^2=31+2\sqrt{30}x,\sqrt{30}=\frac{y^2-31}{2x}$
$\sqrt{30}=\frac{\sqrt5x^2-10x}2$,
$\sqrt5=\left(\frac{y^2-31}{2x}+5x\right)\frac2{x^2}=\frac{y^2-31+10x^2}{x^3}$得$\sqrt2+\sqrt3=x-\sqrt5=x-\frac{y^2-31+10x^2}{x^3}=x-\frac{\left(\frac{x^2-10}2\right)^2-31+10x^2}{x^3}$
第二种.$\frac{1}{576} x \left(-5 x^6+194 x^4-1520 x^2+3120\right)$
$x=\sqrt 2+\sqrt 3+\sqrt 5$是8次代数数,将$x,x^2,\cdots,x^7$列出,解线性方程组即可. |
|