Forgot password?
 Register account
View 860|Reply 3

$\frac{P(\sqrt2+\sqrt3+\sqrt5)}{Q(\sqrt2+\sqrt3+\sqrt5)}=\sqrt3+\sqrt2$

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-1-30 17:26 |Read mode
求整系数多项式$P(x),Q(x)$满足$\frac{P(\sqrt2+\sqrt3+\sqrt5)}{Q(\sqrt2+\sqrt3+\sqrt5)}=\sqrt3+\sqrt2$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-1-31 09:48
Last edited by hbghlyj 2020-1-31 21:07第一种.$\frac{3x^4-20x^2+24}{4x^3}$
$x=\sqrt 2+\sqrt 3+\sqrt 5,x^2=10+2(\sqrt6+\sqrt{10}+\sqrt{15})$,令$y=\sqrt6+\sqrt{10}+\sqrt{15}=\frac{x^2-10}2$,$y^2=31+2\sqrt{30}x,\sqrt{30}=\frac{y^2-31}{2x}$
$\sqrt{30}=\frac{\sqrt5x^2-10x}2$,
$\sqrt5=\left(\frac{y^2-31}{2x}+5x\right)\frac2{x^2}=\frac{y^2-31+10x^2}{x^3}$得$\sqrt2+\sqrt3=x-\sqrt5=x-\frac{y^2-31+10x^2}{x^3}=x-\frac{\left(\frac{x^2-10}2\right)^2-31+10x^2}{x^3}$
第二种.$\frac{1}{576} x \left(-5 x^6+194 x^4-1520 x^2+3120\right)$
$x=\sqrt 2+\sqrt 3+\sqrt 5$是8次代数数,将$x,x^2,\cdots,x^7$列出,解线性方程组即可.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-1-31 21:23
Last edited by hbghlyj 2020-2-2 09:50√2+√3+√5的整系数的多项式之比,与√2+√3+√5的有理系数的多项式,所能表示的数的集合是相等的.即
{P(√2+√3+√5)/Q(√2+√3+√5)|P(x),Q(x)∈Z[x]}={P(√2+√3+√5)/q|P(x)∈Z[x],q∈Z}
往Q上加一个代数元x,Q[T]/(x的极小多项式)=Q[x]是个域,它=Q(x)=Z(x)

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2022-11-24 22:33
能不能整参数表示这两个整系数多项式呢?

Mobile version|Discuz Math Forum

2025-5-31 10:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit