Forgot password?
 Register account
View 1005|Reply 6

三道有关三次单位根的题目

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-1-31 13:04 |Read mode
Last edited by hbghlyj 2020-2-1 10:331.如果ax+cy+bz=X,cx+by+az=Y,bx+ay+cz=Z,证明$\left( {{{\rm{a}}^2} + {b^2} + {c^2} - bc - ca - ab} \right)\left( {{x^2} + {y^2} + {z^2} - yz - zx - xy} \right) = {X^2} + {Y^2} + {Z^2} - YZ - XZ - XY$
2.(1)$k\in\mathbf N_+$,求证:$x^2+x+1|x^k+1+(x+1)^k\Leftrightarrow k\equiv 2,4\pmod6$
(2)$(x^2+x+1)^2|x^k+1+(x+1)^k\Leftrightarrow k\equiv4\pmod6$
(3)不存在$k\in\mathbf N_+$,$(x^2+x+1)^3|x^k+1+(x+1)^k$
来自这贴的第六组原12题
3.${{\rm{f}}_1} = {{\rm{x}}^2},{g_1} = xy,{h_1} = {y^2},{f_{n + 1}} = {\left( {{f_n} + {g_n}} \right)^2},{g_{n + 1}} = g_n^2,{h_{n + 1}} = {\left( {{g_n} + {h_n}} \right)^2},$求证:${{\rm{x}}^2} + {\rm{xy}} + {{\rm{y}}^2}|{f_n} + {g_n} + {h_n}$
\[{x^2}{\left( {x + y} \right)^2} + {x^2}{y^2} + {y^2}{\left( {x + y} \right)^2}={\left( {{x^2} + xy + {y^2}} \right)^2}\]\[{x^4}{({x^2} + 2xy + 2{y^2})^2} + {x^4}{y^4} + {y^4}{(2{x^2} + 2xy + {y^2})^2} = ({x^2} - xy + {y^2})({x^2} + xy + {y^2})({x^4} + 4{x^3}y + 7{x^2}{y^2} + 4x{y^3} + {y^4})\]\[{\left( {{{\rm{x}}^{\rm{8}}}{\rm{ + 4}}{{\rm{x}}^{\rm{7}}}{\rm{y + 8}}{{\rm{x}}^{\rm{6}}}{{\rm{y}}^{\rm{2}}}{\rm{ + 8}}{{\rm{x}}^{\rm{5}}}{{\rm{y}}^{\rm{3}}}{\rm{ + 5}}{{\rm{x}}^{\rm{4}}}{{\rm{y}}^{\rm{4}}}} \right)^{\rm{2}}} + {{\rm{x}}^{\rm{8}}}{{\rm{y}}^{\rm{8}}} + {\left( {{\rm{5}}{{\rm{x}}^{\rm{4}}}{{\rm{y}}^{\rm{4}}}{\rm{ + 8}}{{\rm{x}}^{\rm{3}}}{{\rm{y}}^{\rm{5}}}{\rm{ + 8}}{{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{6}}}{\rm{ + 4x}}{{\rm{y}}^{\rm{7}}}{\rm{ + }}{{\rm{y}}^{\rm{8}}}} \right)^{\rm{2}}} = ({x^2} + xy + {y^2})({x^{14}} + 7{x^{13}}y + 24{x^{12}}{y^2} + 49{x^{11}}{y^3} + 65{x^{10}}{y^4} + 54{x^9}{y^5} + 25{x^8}{y^6} + {x^7}{y^7} + 25{x^6}{y^8} + 54{x^5}{y^9} + 65{x^4}{y^{10}} + 49{x^3}{y^{11}} + 24{x^2}{y^{12}} + 7x{y^{13}} + {y^{14}})\]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-1-31 13:06
Last edited by hbghlyj 2020-2-1 09:371.使用这帖的因式分解
\[z_1^2+z_2^2+z_3^2-z_1z_2-z_1z_3-z_2z_3=0
\]左边可在复数范围内分解因式,即\[(z_1+\omega z_2+\omega^2z_3)(z_1+\omega^2z_2+\omega z_3)=0\]
huing 发表于 2019-5-5 18:01
\[LHS = \left( {a + {\omega ^2}b + \omega c} \right)\left( {x + {\omega ^2}y + \omega z} \right)\left( {a + \omega b + {\omega ^2}c} \right)\left( {x + \omega y + {\omega ^2}z} \right) = \left( {X + \omega Y + {\omega ^2}Z} \right)\left( {X + {\omega ^2}Y + \omega Z} \right) = RHS\]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-2-1 09:37
2.(1)$x^2+x+1$的根为$x=\omega,\omega^2,x^2+x+1|x^k+1+(x+1)^k⇔\omega^k+1+(\omega+1)^k=\omega^k+1+(-\omega^2)^k=0⇔k≡2,4\pmod6$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-2-1 23:21
Last edited by hbghlyj 2020-2-1 23:52不需要用到三次单位根就能证明
3.下面证明命题$x^2+xy+y^2|f_n+g_n+h_n$且$x^2+xy+y^2|f_n^2+f_nh_n+h_n^2$对任意正整数n成立.当n=1时显然成立.设命题对n成立.一方面,$x^2+xy+y^2|f_n^2+f_nh_n+h_n^2+3g_n(f_n+g_n+h_n)=(f_n+g_n)^2+(f_n+g_n)(g_n+h_n)+(g_n+h_n)^2,x^2+xy+y^2|((f_n+g_n)^2-(f_n+g_n)(g_n+h_n)+(g_n+h_n)^2)((f_n+g_n)^2+(f_n+g_n)(g_n+h_n)+(g_n+h_n)^2)=(f_n+g_n)^4+(f_n+g_n)^2(g_n+h_n)^2+(g_n+h_n)^4=f_{n+1}^2+f_{n+1}h_{n+1}+h_{n+1}^2.$另一方面,$x^2+xy+y^2|f_n^2+f_nh_n+h_n^2=(f_n+h_n)^2-f_nh_n=((f_n+g_n+h_n)-g_n)^2-f_nh_n,x^2+xy+y^2|g_n^2-f_nh_n.x^2+xy+y^2|(f_n+g_n+h_n)^2+2(g_n^2-f_nh_n)=f_{n+1}+g_{n+1}+h_{n+1}$.所以命题对n+1成立.由归纳原理,命题对任意正整数n成立.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-2-1 23:30
Last edited by hbghlyj 2020-2-1 23:393.加强命题然后归纳.大家看看,有错吗?无论是论证错还是计算错还是打字错
原来的2.(2)表述比较复杂,我把它拆成了两问(2)(3),不影响原意

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-2-10 21:58
Last edited by hbghlyj 2020-2-10 22:044.n为正整数,求证:$a^{2 n}+a^n b^n+b^{2 n}$在$\mathbf Q$上不可约$\Leftrightarrow$n为3的次幂

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-2-10 22:02
再问一个问题:这里判定多项式可约性怎么冒出”Delaunay triangulation“了? QQ图片20200123152407.gif

Mobile version|Discuz Math Forum

2025-5-31 10:48 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit