|
这样对吗?对的话,有没更简单办法
设$\vv{a}=(2\cos α,2\sin α),\vv{b}=(\sqrt{3}\cos β,\sqrt{3}\sin β),\vv{c}=(1,0)$
即求$\abs{\vv{a}-\vv{b}}\abs{\vv{a}+\vv{b}}=\sqrt{49-48\cos ^2 (α-β)}$的最大值.---(*)
而由$5=(\vv{a}-\vv{c})·(\vv{b}-\vv{c})$得到$2\sqrt{3}\cos (α-β)-4=2\cos α+\sqrt{3}\cos β \in [-\sqrt{7},\sqrt{7}]$把这个结果代入(*) |
|