Forgot password?
 Register account
View 2227|Reply 4

[函数] $e^x=P(x)$有n+1个根

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-2-4 10:49 |Read mode
Last edited by hbghlyj 2021-6-4 12:55n为正整数,求n次多项式P(x),使$e^x=P(x)$有n+1个不同的实根
n=1,P(x)=(e-1)x+1,x=0,1

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2021-6-3 22:06
P(x)=10(x+1)(x+2).....(x+n)就符合吧
因为$0<e^x<0.5,x<-1$,所以x=-1,-2,...-n附近有n个根,最后一个根在$(0,+\infty)$,x足够大时,$e^x>Ax^n$
QQ截图2021060322034wwwww3337.png

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-6-4 02:55
回复 2# realnumber
哦哦,这个解法利用了x轴是$y=e^x$的渐近线.
如果改为"有n+1个不同的正实根"呢

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2021-6-4 07:32
Last edited by realnumber 2021-6-8 12:39这样?,过点$(1,e)(2,e^2),....,(n,e^n)$插值公式用一下,n个根1,2,,n
还有最后一个根在$(n,+\infty)$,最后一根显然,但证明怎么证啊,包括2楼说法

保险些还是这样吧$P_n(x)=10n^n(x-\frac{1}{n})(x-\frac{2}{n})....(x-\frac{n}{n})$,与2楼没大的区别

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2022-2-26 19:45
$n$ 次多项式 $P_n(x)$ 与 $e^x$ 至多有 $n+1$ 个交点吧.

显然 $e^x-P_n(x)$ 的零点数量不超过驻点数量 $+1$. 驻点即一阶导为 $0$ 的点, 即 $P'_n(x)$ 与 $e^x$ 之交点. 数学归纳显然.

Mobile version|Discuz Math Forum

2025-5-31 10:45 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit