Forgot password?
 Register account
View 1157|Reply 5

这道题是不是错了

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-2-4 13:27 |Read mode
无标题.png 无标题.png
如果p=p'那么q=q',分母=0没有意义啊
两个方程是一样的啊
$\frac{pq'-p'q}{q-q'}$应该去掉啊

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-2-4 13:33
Last edited by hbghlyj 2020-2-4 22:41题是没错的。标答错了。
两种消元方法出来的式子也是相等的。这正是有公共根的条件。有以下恒等式
$\frac{q-q'}{p'-p}=\frac{pq'-p'q}{q-q'}=\pm\sqrt{\frac{pq'-p'q}{p-p'}}$
要求分母不为0,即p≠p',q≠q',也就是说,两个方程不能是完全相同的。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-2-4 22:23
无标题.png 无标题.png
这道题是不是错了?三个根号加起来=0,不就都=0吗?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-2-4 22:27
Last edited by hbghlyj 2020-2-4 22:38题错了。标答也错了。这是不注意平方根的正负号的后果。正确解法应该是
若pq>0,则\[\sqrt {\frac{p}{q}}  + \sqrt {\frac{q}{p}}  = \sqrt {\frac{p}{q} + \frac{q}{p} + 2}  = \sqrt {\frac{{{n^2} - 2nl}}{{nl}} + 2}  = \sqrt {\frac{n}{l}} ,\sqrt {\frac{p}{q}}  + \sqrt {\frac{q}{p}}  - \sqrt {\frac{n}{l}}  = 0\]
若pq<0,则\[\sqrt { - \frac{p}{q}}  + \sqrt { - \frac{q}{p}}  = \sqrt { - \frac{p}{q} - \frac{q}{p} + 2}  = \sqrt { - \frac{{{n^2} - 2nl}}{{nl}} + 2}  = \sqrt {\frac{n}{l} + 4} ,\sqrt { - \frac{p}{q}}  + \sqrt { - \frac{q}{p}}  - \sqrt {\frac{n}{l} + 4}  = 0\]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-2-4 22:43
回复 4# hbghlyj
请详细说说标答哪里错了,我没看出啊

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-2-4 22:47
回复 5# hbghlyj
我已经说了"是不注意平方根正负的后果",你没仔细看。
题中方程$lx^2+nx+n=0$的两根的倒数和为-1,而且同号(pq>0),所以a<0,$a=-\frac1{\sqrt{pq}}\sqrt{\frac nl}$,后略

Mobile version|Discuz Math Forum

2025-5-31 10:44 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit