Forgot password
 Register account
View 1114|Reply 4

初中几何一题,证线段相等

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2020-2-4 23:30 |Read mode
Last edited by hbghlyj 2020-2-6 10:57 无标题.png
在锐角$\triangle$ABC中,$\angle B>\angle C$,M是BC中点,BE,CF是高,G,H分别是ME,MF中点,过A作BC平行线交GH于I,求证:IA=IM

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2020-2-6 04:56
Last edited by 乌贼 2020-2-6 14:01如图:$ AB $为园$ O $的直径,P为园外一点,$ \triangle PAB $为锐角三角形,$ PA、PB $分别交园于$ C、D $两点,$ CD $与$ AB $交于点$ E $,$ F $为$ AD $与$ CB $交点。求证:$ \angle EPB=\angle AFO $
211.png

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2020-2-6 11:02
回复 2# 乌贼
神人!

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2020-2-6 15:49
回复 1# hbghlyj
标答?

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2020-2-6 22:58
Last edited by 乌贼 2020-2-6 23:29如图:
    213.png
延长$ EF $分别交$ AI、BC $于$ K、D $,延长$ GH $交$ BC $于$ P $有\[ DP=PM=KI \]取$ EF $的中点$ N $,作$ D $在$ AM $上的垂足$ Q $,有$ DMQN  $四点共圆,得\[ \angle KNQ=\angle QMD=\angle QAK \]即$ ANQK $四点共圆。得\[ \angle ANK=\angle AQK \]又\[ \triangle AEF\sim \triangle ABC \riff\begin{gather*}
\begin{cases}
\angle AEF=\angle ABC\\\dfrac{AE}{EF}=\dfrac{AB}{BC}
\end{cases}
\riff\begin{cases}
\angle AEF=\angle ABC\\\dfrac{AE}{EN}=\dfrac{AB}{BM}
\end{cases}
\riff \triangle AEN\sim \triangle ABM\riff\angle AQK=\angle ANE=\angle AMB=\angle PQM
\end{gather*}\]即$ PQK $三点共线且\[ \begin{gather*}
\begin{cases}
AK=KQ\\PM=PQ
\end{cases}\riff PK=AK+KI=AI
\end{gather*} \]

还有\[ KI\pqd PM \riff IM=PK=IA\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:25 GMT+8

Powered by Discuz!

Processed in 0.019789 seconds, 28 queries