Forgot password
 Register account
View 1611|Reply 3

[不等式] 求参数可能取值

[Copy link]

46

Threads

82

Posts

1

Reputation

Show all posts

Shiki posted 2020-2-9 19:26 |Read mode
Last edited by Shiki 2020-2-9 19:32确定实数$\alpha$的范围,使得对不相等的正实数$x,y$

$$|\frac{1}{1+x^{\alpha}}-\frac{1}{1+y^{\alpha}}| \leq |x-y|$$


恒成立。

论坛好卡。。。。
= =

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2020-2-9 20:26
Last edited by hbghlyj 2020-2-9 20:42等价于$f(x)=\frac1{1+x^\alpha},x\in\mathbf R^+$的割线斜率$\in$[-1,1],
等价于$f'(x)=-\frac{\alpha  x^{\alpha -1}}{\left(x^{\alpha }+1\right)^2}\in[-1,1],\forall x\in\mathbf R^+$.
$f''(x)=\frac{\alpha  x^{\alpha -2} \left(-\alpha +\alpha  x^{\alpha }+x^{\alpha }+1\right)}{\left(x^{\alpha }+1\right)^3}$,
所以$\alpha\in[-a,-1]\cup[1,a]$
其中a=3.717430610620688...为$-\frac{\alpha ^2-1}{4 \alpha }\left(\frac{\alpha +1}{\alpha -1}\right)^{\frac1\alpha } $的零点

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2020-2-9 20:38
回复 1# Shiki
请看,2#的过程有问题吗?

46

Threads

82

Posts

1

Reputation

Show all posts

original poster Shiki posted 2020-2-12 07:05
回复 3# hbghlyj


    应该没问题

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:50 GMT+8

Powered by Discuz!

Processed in 0.013091 seconds, 24 queries