Forgot password?
 Register account
View 2031|Reply 4

[几何] 一向量三角形求角

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2020-2-10 22:16 |Read mode
Last edited by hbghlyj 2025-3-9 20:22我好累,用了坐标算。
内接于圆$O$的$\triangle ABC$的内心为$I$,若角$B=\frac{π}{4}$,且$\bm{OI}\px \bm{BC}$,求$\cos C$的值.

求大神高人高明的指导

求大神高人高明的指导

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2020-2-10 22:34
由平行知 r=RcosA,又熟知 cosA+cosB+cosC=1+r/R,故 cosB+cosC=1。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-2-11 00:29
Last edited by hbghlyj 2020-2-11 07:28我来介绍一个点
I关于BC中点对称到I',外接圆的不含A的弧BC的中点为D,则I'D这种直线共有3条,它们共点于外接圆上一点P,且PA=PB+PC(如果P在弧BC上)
QQ图片20200123152407.gif
如果OI∥BC,那么P就是A的对径点,因为PA=PB+PC,所以cosB+cosC=1。
QQ图片20200123152407.gif

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2020-2-11 18:49
回复2# 色k
3# hbghlyj [/b]
厉害了,玩得好溜!强@色k,@hbghlyj

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2020-2-18 02:57
Last edited by 乌贼 2020-2-18 10:12如图:
   211.png
$ ACDE $为正方形,易证\[ \angle BIE=45\du  \]延长$ CI $交园于$ F $,连接$ DF $交$ BI $于$ M $,有\[ \angle MIE=\angle MFE=45\du  \]即$ IMEF $四点共圆,得$ \triangle IME $为等腰直角三角形,又$ \triangle CDE $也为等腰直角三角形,故\[ \angle DEM=\angle CEI \]作$ BN\perp DF $交$ AD $于$ N $,有\[ DB=DN\\ BF=FN \]又\[ FN=FB=FI=FA \],因此$ AINB $四点共圆且圆心为$ F $得\[ \angle BIN=\angle BAN=\angle 1 \]及\[ \angle NFI=2\angle NBI=\angle NMI \]所以$ INMEF $五点共圆,有\[ \angle NEM=\angle NIM=\angle 1\riff\angle DEN=\angle BEM=22.5\du \riff \angle AEN=\angle ANE=67.5\du \riff AN=AE \]令$ AC=1 $,有\[ \cos C=\cos D=\dfrac{BD }{AD}=\dfrac{\sqrt{2}-1}{\sqrt{2}}=1-\dfrac{\sqrt{2}}{2} \]

Mobile version|Discuz Math Forum

2025-5-31 11:08 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit