Forgot password?
 Register account
View 1979|Reply 5

[不等式] 分式不等式a^2/b^2,abc/(a^3+b^3+c^3)

[Copy link]

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2020-2-11 18:57 |Read mode
teomihai:

If you have time for this
let a,b,c>0,prove that

$\displaystyle\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}+\frac{9abc}{4(a^3+b^3+c^3)}\geq{\frac{15}{4}}$

thanks very much
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

 Author| tommywong Posted 2020-2-12 16:47
teomihai:

i solvi,t with this
Prove for any a,b,c>0

$\displaystyle\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \right) \ge \frac{9(a^2+b^2+c^2)}{(a+b+c)^2}$
,but i don't prove that!, you have one hint?
thanks very much

686

Threads

110K

Posts

910K

Credits

Credits
91243
QQ

Show all posts

kuing Posted 2020-2-13 15:00
回复 2# tommywong

这个我在《撸题集》P.948 记载过,与 1# 的题有啥关联吗?

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

 Author| tommywong Posted 2020-2-15 07:47
teomihai:

i solve this$\displaystyle\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \right) \ge \frac{9(a^2+b^2+c^2)}{(a+b+c)^2}$

with that

$$(a+b+c)^2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-10(a^2+b^2+c^2)+(ab+bc+ca)=\sum \frac{(a-b)^2(b-2c)^2}{bc} $$
but is very ugly (how we find this decomposition?)
thanks very much

686

Threads

110K

Posts

910K

Credits

Credits
91243
QQ

Show all posts

kuing Posted 2020-2-15 14:10
回复 4# tommywong

这个恒等式

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

青青子衿 Posted 2020-2-16 15:21
回复 4# tommywong

这个恒等式怎么发现的?
样子有点奇怪……

Mobile version|Discuz Math Forum

2025-6-3 06:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit