Forgot password
 Register account
View 1789|Reply 5

[不等式] 一个三元无理不等式

[Copy link]

29

Threads

53

Posts

1

Reputation

Show all posts

wanhuihua posted 2020-2-16 10:07 |Read mode
$$
\eqalign{
  & {\cal 设}a,b,c{\cal 为}{\cal 正}{\cal 实}{\cal 数} {\text{ }}  \cr
  & {\cal 求}{\cal 证}  \cr
  & {\text{ }}\sqrt {\frac{a}
{{b + c}}}  + \sqrt {\frac{b}
{{c + a}}}  + \sqrt {\frac{c}
{{a + b}}}  \geqslant \sqrt {4 + \,\frac{{3abc\left( {a + b + c} \right)}}
{{2\left( {ab + bc + ca} \right)^2 }}}  \cr}
$$

29

Threads

53

Posts

1

Reputation

Show all posts

original poster wanhuihua posted 2020-2-19 22:17
一个弱一点不等式的证明
20021922168c86aa40b965b327.jpg

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2020-2-21 02:44
平方即
\[\sum\frac a{b+c}+2\sum\sqrt{\frac{bc}{(c+a)(a+b)}}\geqslant4+\frac{3abc(a+b+c)}{2(ab+bc+ca)^2},\]由 CS 有
\[\sum\frac a{b+c}\geqslant\frac{(a+b+c)^2}{2(ab+bc+ca)},\]由 AG 有
\[\sum\sqrt{\frac{bc}{(c+a)(a+b)}}=\sum\frac{bc}{\sqrt{(bc+ab)(ca+bc)}}\geqslant\sum\frac{2bc}{ab+2bc+ca},\]所以只需证
\[\frac{(a+b+c)^2}{2(ab+bc+ca)}+\sum\frac{4bc}{ab+2bc+ca}\geqslant4+\frac{3abc(a+b+c)}{2(ab+bc+ca)^2},\] 换元 `x=bc`, `y=ca`, `z=ab`,上式化为
\[\frac{(xy+yz+zx)^2}{2xyz(x+y+z)}+\sum\frac{4x}{2x+y+z}\geqslant4+\frac{3(xy+yz+zx)}{2(x+y+z)^2},\]接下来可以用 pqr 法 Baoli 解决,过程由于时间关系懒得写……

29

Threads

53

Posts

1

Reputation

Show all posts

original poster wanhuihua posted 2020-2-21 14:25
可以降到6次 有点意思

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2020-2-22 18:16
回复 4# wanhuihua

如何降到6次?(我上面3#最后的不等式去分母后是8次

29

Threads

53

Posts

1

Reputation

Show all posts

original poster wanhuihua posted 2020-2-22 18:57
回复 5# kuing

继续研究,好像有两种方法可以降到6次

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:14 GMT+8

Powered by Discuz!

Processed in 0.016083 seconds, 25 queries