Forgot password
 Register account
View 1890|Reply 4

[几何] 固定形状的内接三角形的一些最值

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2020-2-16 19:13 |Read mode
Last edited by hbghlyj 2020-2-19 15:40给定两个三角形$DEF$与$\Gamma$,点D,E,F分别在直线BC,CA,AB上,$\triangle ABC\sim\Gamma$,$\frac{\S{DEF}}{R_{DEF}}$的取值范围
设$\angle AEF=x+60°+\frac{C-A+F-E}3,\angle AFE=60°-x+\frac{B-A+E-F}3$,$2(\S{AEF}+\S{BDF}+\S{CDE})=\sum\frac{EF\sin\left(x+60°+\frac{C-A+F-E}3\right)\sin\left(60°-x+\frac{B-A+E-F}3\right)}{\sin A}=\sum\frac{EF\left(\cos\left(2x+\frac{C-B+2F-2E}3\right)+\cos A\right)}{\sin A}$,设$f(x)=\sum\frac{\sin D}{\sin A}\cos\left(2x+\frac{C-B+2F-2E}3\right)$,令$f'(x)=0$,$\tan 2x=-\frac{\sum\frac{\sin D}{\sin A}\sin\left(\frac{C-B+2F-2E}3\right)}{\sum\frac{\sin D}{\sin A}\cos\left(\frac{C-B+2F-2E}3\right)}$时最小

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2020-2-16 20:08
请问多边形怎么弄?@kuing

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2020-2-19 15:08
Last edited by hbghlyj 2020-2-19 15:40另一个问题,给定两个三角形DEF与Γ,点A,B,C分别在直线EF,DF,DE上,△ABC∼Γ,相似比为k,求k的取值范围.
给定两个三角形DEF与Γ,点D,E,F分别在直线BC,CA,AB上,△ABC∼Γ,相似比为k,求k的取值范围.

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2020-2-19 15:14
Last edited by hbghlyj 2020-2-19 15:39回复 3# hbghlyj $\odot$DBC,ECA,FAB共点O,O是定点。DEF分别在$\odot$OBC,OCA,OAB上运动,两三角形正交时,OD,OE,OF能同时取到直径所以最大。多边形也一样

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2020-2-19 15:21
Last edited by hbghlyj 2020-2-19 15:40多边形情况下,∠AEF能不能像1#那样轮换地表示出来

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:21 GMT+8

Powered by Discuz!

Processed in 0.015457 seconds, 26 queries