Forgot password?
 Register account
View 1665|Reply 2

[几何] 求证椭圆中与斜率的有关的一个结论

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2020-2-16 21:43 |Read mode
请教下面这个结论是否成立?若成立,如何证明?
设$M,N$是椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$上的两个动点,$P(x_0,y_0)$是椭圆上一定点,记直线$PM,PN$的斜率分别为$k_1,k_2$,若$\lambda _1(k_1\cdot k_2)+\lambda _2(k_1+k_2)+\lambda _3=0$,则弦$MN$过定点,并求定点的坐标。

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2020-2-17 14:10
回复 1# lemondian
对合。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2020-2-17 19:45
回复 2# 力工
请问:有这方面的资料吗?
能不能从高中解析几何来证明一下呢?

Mobile version|Discuz Math Forum

2025-5-31 11:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit