Forgot password
 Register account
View 1555|Reply 1

[不等式] 三元不等式(a/b)(4a-3b-c)^2

[Copy link]

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2020-2-21 19:01 |Read mode
已知 $a,b,c>0$ 求證

$\displaystyle\frac{a}{b}(4a-3b-c)^2+\frac{b}{c}(4b-3c-a)^2+\frac{c}{a}(4c-3a-b)^2\ge 20(a^2+b^2+c^2-ab-bc-ca)$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-9-14 10:45
artofproblemsolving.com/community/c4h2015518p14144988

artofproblemsolving.com/community/c6h1476960p8597461
w.l.o.g. $abc=1$
\begin{gathered}x_a=4a^2-4b^2+\frac{8}{a}-\frac{5}{b}-\frac{3}{c}\\x_b=4b^2-4c^2+\frac{8}{b}-\frac{5}{c}-\frac{3}{a}\\x_c=4c^2-4a^2+\frac{8}{c}-\frac{5}{a}-\frac{3}{b}\\ \sum \frac{a}{b}(4a-3b-c)^2-10\sum (a-b)^2=\frac{\sum a(2ax_b+2bx_a-bx_c-cx_a)^2+14\sum x_a^2}{4\sum a^2+17\sum \frac{1}{a}}\ge 0\end{gathered}

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:23 GMT+8

Powered by Discuz!

Processed in 0.010485 seconds, 22 queries