Forgot password?
 Register account
View 2005|Reply 6

[几何] 转人教群之等边证相等

[Copy link]

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2020-2-24 03:00 |Read mode
000.png

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2020-2-24 13:37
回复 1# 乌贼

首先观察一下如果$BE=BG$会怎样
这样会有$∠G=∠BEG$,而又易证$△ABD≌△AEC$,会有$∠G=∠BEG=∠AEC=∠ADB$,因此$A, B, G, D$共圆,于是我们朝这个方向前进就行了,换句话说,设法证明
\[BF\cdot DF=GF\cdot AF\]

由梅涅劳斯有
\[\frac{GF}{FA}\cdot\frac{AC}{CD}\cdot\frac{DH}{HG}=1\]
加上$GH=DH$有
\[\frac{AC}{FA}=\frac{CD}{GF}\]
而易证$△ADF∽△ABD$,有
\[\frac{AF}{AD}=\frac{AB}{BD}\]
也就是
\[\frac{AF}{AB}=\frac{AD}{BD}=\frac{GF}{CD}\]
而后
\[GF\cdot AF=\frac{AD}{BD}\cdot CD\cdot AF\]

另一方面,还是梅涅劳斯会有
\[\frac{BE}{EC}\cdot\frac{AC}{AD}\cdot\frac{DF}{BF}=1\]
还是相似会有
\[AD^2=DF\cdot BD\]
而后
\[\frac{BE}{EC}\cdot\frac{AC}{AD}\cdot \frac{AD^4}{BD^2}=BF\cdot DF\]
\[BE\cdot AC\cdot \frac{AD^2}{BD^2}=BF\cdot DF\]

也就是变成设法证明:
\[BE\cdot AC\cdot \frac{AD^2}{BD^2}=\frac{AD}{BD}\cdot CD\cdot AF\]
化简会有
\[AC\cdot \frac{AD}{BD}=AF\]
这个是显然的,因为全等有$BD=AE$,而$△ADF∽△ACE$就会有上面这条

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

 Author| 乌贼 Posted 2020-2-24 20:28
这个逻辑推理严密!

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-2-24 23:31
过A作BC平行线交BG于M,MG=MA,所以G的轨迹是以A为枢点且过B的斜环锁线
点H的轨迹如何分类?(手头没有电脑)

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

 Author| 乌贼 Posted 2020-2-25 14:22
Last edited by 乌贼 2020-2-25 14:34如图:
   211.png
作$ DP\px AG $交$ FC $于$ P $,连接$ GP $交$ BC $于$ Q $,有四边形$ FDPG $为平行四边形,即\[ GP\px FD\riff \angle AGQ=\angle AFD=\angle ABQ=60\du \]则$ ABGQ $四点共圆。又\[ DP\px AG\riff \dfrac{CD}{AC}=\dfrac{CP}{CF}\\GP\px FD\riff \dfrac{CP}{CF}=\dfrac{CQ}{CB} \]故\[ CD=CQ\riff DQ\px AB \]即$ ABQD $四点共圆,也就是$ ABGQD $五点共圆。易证\[ AE=AQ \]有\[ \angle BEG=\angle AEQ=\angle AQE=\angle AGB \]因此\[ BE=BG \]

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

 Author| 乌贼 Posted 2020-2-25 18:37
转人教群解法by粤B学生86鱼
102.jpg

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

 Author| 乌贼 Posted 2020-2-26 01:23
212.png
顺手记下,正$ \triangle ABC $中,$ CD=BE=BN $,$ F $为$ AE $与$ BD $交点,$ CF $交$ EN $于$ M $,则\[ BM\px DE \]由\[ \triangle MEF\sim \triangle EAD\\\triangle BEF\sim \triangle BDC \]可得

Mobile version|Discuz Math Forum

2025-5-31 11:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit