Forgot password
 Register account
View 2126|Reply 7

[几何] |c-a/2|取值範圍

[Copy link]

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2020-2-25 20:43 |Read mode
Last edited by tommywong 2020-2-27 20:01已知向量a,b,c滿足$|a|=2,~|b|=a\dot b=3,~c=xa+yb~(x>0,y>0),$
$|a|=2,~|b|=$$a\dot b$$=3,~c=xa+yb~(x>0,y>0),$
$|a|=2,~|b|=$$a\cdot b$$=3,~c=xa+yb~(x>0,y>0),$
若$~c-2a~$與$~c-\dfrac{2}{3}b~$的夾角為$\dfrac{\pi}{3}$,則$|c-\dfrac{1}{2}a|$的取值範圍是
A. $[\sqrt{7}-2,\sqrt{7}+2]$
B. $(3,\sqrt{7}+2]$
C. $[1,3)$
D. $(\sqrt{3},\sqrt{7}+2]$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

9

Threads

38

Posts

6

Reputation

Show all posts

player1703 posted 2020-2-26 05:24
Last edited by player1703 2020-2-26 05:32如图, 点C在圆弧$B_1'C_1A_1$上运动(不包括端点).
$\therefore 3 = A_2A_1 \lt A_2C \le A_2D + DC = \sqrt{7}+2$
所以选B.

Capture.PNG

Rate

Number of participants 1威望 +1 Collapse Reason
tommywong + 1

View Rating Log

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2020-2-27 18:16
回复 1# tommywong
您可能把点积打成b上边的点了

81

Threads

434

Posts

12

Reputation

Show all posts

original poster tommywong posted 2020-2-27 20:03
回复 3# hbghlyj

sorry大佬,眼殘睇唔到

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2020-3-1 22:58
Last edited by 乌贼 2020-3-1 23:29向量a,b的夹角为什么不能是$120\du$呢?
211.png

2

Threads

14

Posts

1

Reputation

Show all posts

山川浮云 posted 2020-3-2 00:50
Last edited by hbghlyj 2025-4-7 01:09回复 5# 乌贼

$\vec a \cdot \vec b{\rm{ = |}}\vec a{\rm{||}}\vec b{\rm{|}}\cos  < \vec a,\vec b > ( < \vec a,\vec b >$是夹角).

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2020-3-2 01:05
回复 6# 山川浮云

不用点击“代码按钮”,像平常一样直接输入即可(不过我猜你是从 mathtype 上复制过来的,那就直接粘贴即可)

2

Threads

14

Posts

1

Reputation

Show all posts

山川浮云 posted 2020-3-2 01:10
回复 7# kuing
成了

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:29 GMT+8

Powered by Discuz!

Processed in 0.015491 seconds, 30 queries