Forgot password?
 Register account
View 1741|Reply 3

[不等式] 一道解三角形

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-3-9 14:57 |Read mode
锐角$\triangle ABC$中,$\cos B\cos C=\sin\left(B+\frac\pi3\right)\sin C$,b=1,求三角形的周长的取值范围

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-3-9 15:00
$\tan C=\frac{\cos B}{\sin\left(B+\frac\pi3\right)}$,$a+c=\frac{\tan B\sin\left(B+\frac\pi3\right)+\cos B+1}{\sqrt{\tan^2B\sin^2\left(B+\frac\pi3\right)+\sin^2B}}$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-3-9 17:11
锐角$\triangle ABC$中,$\cos B\cos C=\sin\left(B+\frac\pi3\right)\sin C$,b=1,求三角形的周长的取值范围
hbghlyj 发表于 2020-3-9 14:57
对已知等式的右边展开,再把左边除过去得
\[1=\left( \frac12\tan B+\frac{\sqrt3}2 \right)\tan C,\]也即
\[\tan B=2\cot C-\sqrt3,\]故当 `C` 递增时,`B` 递减,所以 `c=\sin C/\sin B` 递增,另一方面
\[a=\frac{\sin A}{\sin B}=\frac{\sin B\cos C+\cos B\sin C}{\sin B}=\cos C+\frac{\sin C}{\tan B}=\cos C+\frac{\sin C}{2\cot C-\sqrt3}=f(C),\]求导得
\[f'(C)=\frac{3\sqrt3\cos C-\sin C}{\bigl( 2\cot C-\sqrt3 \bigr)^2},\]由 `2\cot C-\sqrt3>0` 可知 `3\sqrt3\cos C-\sin C>0`,所以 `f'(C)>0`,即 `a` 关于 `C` 递增。

综上所述,周长关于 `C` 递增,所以接下来只需求出 `C` 的范围,待续……

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-3-9 20:32
Last edited by hbghlyj 2020-3-9 20:39回复 2# hbghlyj
$\tan C>\tan (\frac\pi2-B)$
$B\in\left(\frac\pi3,\frac\pi2\right)$
a+c关于B单调递减
$a+b+c\in\left(2,1+\sqrt3\right)$
我做得比较繁。请看,有问题吗?

Mobile version|Discuz Math Forum

2025-5-31 10:45 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit