Forgot password?
 Register account
View 1688|Reply 2

[函数] 三角函数不等式

[Copy link]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2020-3-12 10:40 |Read mode
再一个三角函数的不等式,$ f(x)=lnx+\dfrac{a-1}{x},g(x)=\dfrac{a(sinx+1)-2}{x} ,a∈R,$(1)求f(x)的极小值;(2)证明:$-1\leqslant a\leqslant 1,f(x)>g(x)$

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2020-3-12 19:36
回复 1# 敬畏数学 期盼高手。。。。。解答一下。谢谢!第一问是否有用?想了一想没有结果。

2

Threads

14

Posts

213

Credits

Credits
213

Show all posts

山川浮云 Posted 2020-3-14 18:20
$f(x)>g(x)即x\ln x-a\sin x+1>0\\
令h(x)=x\ln x-a\sin x+1\\
当x>=1时易证结论成立(x\ln x>=0,-a\sin x>=-1)\\
则当0<x<1时,h'(x)=\ln x+1-a\cos x(可证其递增)\\
所以存在x_0\in(0,1)使h'(x_0)=0即\ln x_0+1-a\cos x_0=0\\
在x_0处h(x)_{min}=x_0\ln x_0-a\sin x_0+1=a(x_0\cos x_0-\sin x_0)+(1-x_0)\\
因x_0\in(0,1) 时,x_0\cos x_0-\sin x_0<0 则a\in[-1,0]时,h(x)_{min}>0 得证\\
当a\in(0,1]时,h(x)_{min}=x_0\ln x_0-a\sin x_0+a\cos x-\ln x_0=(x_0-1)\ln x_0+a(\cos x_0-\sin x_0)>0\\
综上-1\le a\le 1,f(x)>g(x). $
做起来累,打上来更累。

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1 公式

View Rating Log

Mobile version|Discuz Math Forum

2025-5-31 10:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit