Forgot password?
 Register account
View 1588|Reply 1

[函数] 零点问题

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2020-3-13 19:32 |Read mode
已知函数$f(x)=lnx+x^2-ax+2(a$为实数)在定义域内不单调。
(1)求实数$a$的取值范围;(2)若函数$f(x)$存在3个不同零点,证明:存在$m,n$,使$\frac{f(m)-f(n)}{m-n}
<2\sqrt{2}-3$.
(1)$a>2\sqrt{2}$.但(2)看了答案,不知所云,构造了两次函数,不明觉厉,感觉复杂,
求大佬帮忙解决.
https://kuing.cjhb.site/forum.php?mod=viewthread&tid=5130&highlight=%E4%B8%89%E4%B8%AA%2B%2B%E9%9B%B6%E7%82%B9

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2020-3-14 12:05
回复 1# 力工


\[f'(x)=\frac{1}{x}+2x-a=0\]
\[x=\frac{1}{4}(a\pm\sqrt{a^2-8})\]
这里要有三个解得保证
\[f\left(\frac{1}{4}(a+\sqrt{a^2-8})\right)=\frac{1}{8}(12-a(a+\sqrt{a^2-8}))+\ln\left(\frac{1}{4}(a+\sqrt{a^2-8})\right)<0\]
这其中如果令中间这块为$g(a)$,有
\[g'(a)=\frac{d}{da}\left[\frac{1}{8}(12-a(a+\sqrt{a^2-8}))+\ln\left(\frac{1}{4}(a+\sqrt{a^2-8})\right)\right]=-\frac{1}{4}(a+\sqrt{a^2-8})<0\]
而$g(3)=0$,因此$a>3$

按中值定理,假设$m<n$,则存在$\xi\in(m,n)$使得$\frac{f(m)-f(n)}{m-n}=f'(\xi)$,这里不妨找一下$f'(x)$的最小值,那么
\[f''(x)=2-\frac{1}{x^2}\]
其最小值在$x=\frac{1}{\sqrt{2}}$取到,此时
\[f'(\frac{1}{\sqrt{2}})=2\sqrt{2}-a<2\sqrt{2}-3\]
那么如果令$a=3+\Delta a$,其中$\Delta a>0$为常数,鉴于
\[\frac{f(m)-f(n)}{m-n}=f'(\xi)>f'(\frac{1}{\sqrt{2}})\]
我们令$m=\frac{1}{\sqrt{2}},n\to \left(\frac{1}{\sqrt{2}}\right)^+$,就会有
\[\lim_{m=\frac{1}{\sqrt{2}},n\to \left(\frac{1}{\sqrt{2}}\right)^+}\frac{f(m)-f(n)}{m-n}=f'(\frac{1}{\sqrt{2}})=2\sqrt{2}-a=2\sqrt{2}-3-\Delta a\]
按极限定义,对任意给定正数$\sigma$,总存在$n=\frac{1}{\sqrt{2}}+\Delta n, \Delta n>0$使得
\[|\frac{f(\frac{1}{\sqrt{2}})-f(\frac{1}{\sqrt{2}}+\Delta n)}{\Delta n}-f'(\frac{1}{\sqrt{2}})|<\sigma\]
那么当$\sigma=\Delta a$时自然也不例外,此时存在$n$使得
\[\frac{f(\frac{1}{\sqrt{2}})-f(n)}{\frac{1}{\sqrt{2}}-n}-(2\sqrt{2}-3-\Delta a)<\Delta a\]
\[\frac{f(\frac{1}{\sqrt{2}})-f(n)}{\frac{1}{\sqrt{2}}-n}<2\sqrt{2}-3\]

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit