Forgot password?
 Register account
View 1731|Reply 2

[几何] 向量数量积的最小值

[Copy link]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2020-3-28 15:43 |Read mode
$ A、B $分别为圆$ (x-1)^2+y^2=1,(x-2)^2+y^2=1 $上的两点,O为坐标原点,求$ \vv{OA}\cdot  \vv{OB} $的最小值。求几何法,坐标法已经搞定。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-3-28 16:23
$ A、B $分别为圆$ (x-1)^2+y^2=1,(x-2)^2+y^2=1 $上的两点,O为坐标原点,求$ \vv{OA}\cdot  \vv{OB} $ 的最小值...
敬畏数学 发表于 2020-3-28 15:43
记两圆圆心分别为 `M`, `N`,取最小值时夹角必然是钝角且 $MA\px OB$ 且 $NB\px OA$,如下图所示,易知此时 `OB=ON=2`, `OA=1/2` 以及 $\vv{OA}\cdot\vv{OB}=-1/4$。
QQ截图20200328162249.png

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2020-3-29 10:04
回复 2# kuing
$ A(1+\cos \alpha ,\sin \alpha ),B(2+\cos \beta ,\sin \beta ) $,
$\vv{OA}\cdot \vv{OB}=2+2\cos \alpha +(1+\cos \alpha )\cos \beta +\sin \alpha \sin \beta =2+2\cos \alpha+\sqrt{2+2\cos \alpha }\sin (\beta +\varphi )$
$\geqslant 2+2\cos \alpha -\sqrt{2+2\cos \alpha }=(\sqrt{2+2\cos \alpha }-\frac{1}{2})^2-\frac{1}{4}\geqslant- \frac{1}{4}$
等号成立略!
$ \vv{OA}\cdot \vv{OB}=\vv{OA}\cdot (\vv{ON}+\vv{NB})=|OA|^2+|OA||NB|\cos \alpha \geqslant |OA|^2-|OA|\geqslant -\dfrac{1}{4}$。等号成立略!

Mobile version|Discuz Math Forum

2025-5-31 11:19 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit