|
Author |
敬畏数学
Posted 2020-3-29 10:04
回复 2# kuing
$ A(1+\cos \alpha ,\sin \alpha ),B(2+\cos \beta ,\sin \beta ) $,
$\vv{OA}\cdot \vv{OB}=2+2\cos \alpha +(1+\cos \alpha )\cos \beta +\sin \alpha \sin \beta =2+2\cos \alpha+\sqrt{2+2\cos \alpha }\sin (\beta +\varphi )$
$\geqslant 2+2\cos \alpha -\sqrt{2+2\cos \alpha }=(\sqrt{2+2\cos \alpha }-\frac{1}{2})^2-\frac{1}{4}\geqslant- \frac{1}{4}$
等号成立略!
$ \vv{OA}\cdot \vv{OB}=\vv{OA}\cdot (\vv{ON}+\vv{NB})=|OA|^2+|OA||NB|\cos \alpha \geqslant |OA|^2-|OA|\geqslant -\dfrac{1}{4}$。等号成立略! |
|