|
Author |
hbghlyj
Posted 2020-4-30 23:45
Last edited by hbghlyj 2020-5-4 23:12A(0,0,0)B(1,0,0)C(a,b,0),$t=\cos^2\theta$,则P(x,y,z)满足方程组
\[\led\frac{\left((x-1) x+y^2+z^2\right)^2}{\left((1-x)^2+y^2+z^2\right) \left(x^2+y^2+z^2\right)}=t\\\frac{\left((x-1) (x-a)+y (y-b)+z^2\right)^2}{\left((1-x)^2+y^2+z^2\right) \left((x-a)^2+(y-b)^2+z^2\right)}=t\\\frac{\left(x (x-a)+y (y-b)+z^2\right)^2}{\left(x^2+y^2+z^2\right) \left((x-a)^2+(y-b)^2+z^2\right)}=t\endled\]
消去z,t就得到曲线(1)的方程.- Resultant[((-1 + x) x + y^2 + z^2)^2 ((-a + x)^2 + (-b + y)^2 +
- z^2) - (x^2 + y^2 +
- z^2) ((-1 + x) (-a + x) + y (-b + y) + z^2)^2, ((-1 + x) x +
- y^2 + z^2)^2 ((-a + x)^2 + (-b + y)^2 + z^2) - ((1 - x)^2 +
- y^2 + z^2) (x (-a + x) + y (-b + y) + z^2)^2, z]
Copy the Code
等面三面角.ggb
(30.67 KB, Downloads: 3741)
令人惊喜的发现:
eq1最多有五条渐近线,$X_3$在eq1上且是它的三条渐近线的交点 |
|