Forgot password?
 Register account
View 1409|Reply 4

[数列] 递推数列x_m为素数,则2m+1为素数

[Copy link]

20

Threads

37

Posts

355

Credits

Credits
355

Show all posts

12673zf Posted 2020-4-1 23:02 |Read mode
Last edited by 12673zf 2020-4-2 19:23$a>1,x_0=1,x_1=4a+1,x_{n+1}=(4a+2)x_n-x_{n-1}$
求证,若$x_m$为素数,则$2m+1$也为素数.

我的想法应该还是利用递推,而不是通过特征根方程来算,但没什么进展,如果想从特征根方程着手的,我可以提供一下我的计算结果:
$x=2a+1,y=\sqrt{a^2+a},A=\frac{x+y-1}{2y},B=\frac{y-x+1}{2y},x_n=A(x+y)^n+B(x-y)^n$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-4-2 14:54
$a_m$就是$x_m$吧?

20

Threads

37

Posts

355

Credits

Credits
355

Show all posts

 Author| 12673zf Posted 2020-4-2 19:24
回复 2# hbghlyj
您好,是的,昨晚没注意打错了,现在已经更正。

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2020-4-5 10:56
LTE(扩域)引理及应用(EP1)
zhuanlan.zhihu.com/p/123830414
参看 例题 2.1.1.

20

Threads

37

Posts

355

Credits

Credits
355

Show all posts

 Author| 12673zf Posted 2020-4-5 12:08
太感谢了!LTE引理以前是听过,没有认真了解过,完全想不到这个东西。

Mobile version|Discuz Math Forum

2025-5-31 10:53 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit