Forgot password?
 Create new account
View 2781|Reply 6

[函数] 两道极值点偏移的题目(感觉比较新)

[Copy link]

14

Threads

51

Posts

463

Credits

Credits
463

Show all posts

TTAANN001 Posted at 2020-4-9 11:48:40 |Read mode
Last edited by TTAANN001 at 2020-4-9 15:09:00\begin{align*}
f(x)=x-ae^x+1,f(x_1)=f(x_2)=0, (x_1<x_2)
\end{align*}求证\begin{align*}
(1)e^{-x_1}+e^{-x_2}<e+(2-e)a
\end{align*}\begin{align*}
(2)e^{-x_1}+e^{-x_2}>\frac{2}{3}(4-a)
\end{align*}

14

Threads

51

Posts

463

Credits

Credits
463

Show all posts

 Author| TTAANN001 Posted at 2020-4-9 11:50:51
不知哪位大佬来指教一下

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2020-4-9 14:19:55
回复 1# TTAANN001


错题吧

令$f(x_1)=f(x_2)=y$,易证$y\le-\ln(a)$,当$0<a<1$,注意极值点在$x=-\ln(a)$取到,如果$y\to-\ln(a)$,有$x_1\to-\ln(a)^-, x_2\to-\ln(a)^+$,然后
\[e^{-x_1}+e^{-x_2}\to 2a<\frac{2}{3}(4-a)\]
另一方面当$y\to-\infty$时,$x_1\to-\infty, x_2\to+\infty$
\[e^{-x_1}+e^{-x_2}\to+\infty\]

14

Threads

51

Posts

463

Credits

Credits
463

Show all posts

 Author| TTAANN001 Posted at 2020-4-9 15:04:14
回复 3# 战巡
我也不太清楚,只觉得好麻烦
Snipaste_2020-04-09_14-59-23.png
Snipaste_2020-04-09_15-00-51.png
Snipaste_2020-04-09_15-01-48.png

14

Threads

51

Posts

463

Credits

Credits
463

Show all posts

 Author| TTAANN001 Posted at 2020-4-9 15:06:22
回复 4# TTAANN001
这是原题出处
$type

梁浩——王志强老师的极值点偏移问题的部分证明.pdf

130.9 KB, Downloads: 11197

14

Threads

51

Posts

463

Credits

Credits
463

Show all posts

 Author| TTAANN001 Posted at 2020-4-9 15:10:52
回复 3# 战巡
不好意思,打掉了一个条件已更正

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2021-3-4 19:47:21
回复 5# TTAANN001

多谢多谢,学习了,(百度文库下不动),正好这里有~

手机版Mobile version|Leisure Math Forum

2025-4-22 06:38 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list