Forgot password
 Register account
View 1152|Reply 4

[函数] 求初等解法

[Copy link]

186

Threads

206

Posts

0

Reputation

Show all posts

guanmo1 posted 2020-4-10 10:44 |Read mode
微信图片_20200410102115.png

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2020-4-10 13:06
回复 1# guanmo1

\[(2x+a)\ln(1+\frac{1}{x})>2\]
\[a>-2x+\frac{2}{\ln(1+\frac{1}{x})}\]
这里我们设法证明$\ln(1+\frac{1}{x})>\frac{2}{2x+1}$,这个很简单
\[\frac{d}{dx}\left(\ln(1+\frac{1}{x})-\frac{2}{2x+1}\right)=-\frac{1}{x(x+1)(2x+1)^2}<0\]
故此
\[\ln(1+\frac{1}{x})-\frac{2}{2x+1}>\lim_{x\to\infty}\left(\ln(1+\frac{1}{x})-\frac{2}{2x+1}\right)=0\]
而后有
\[-2x+\frac{2}{\ln(1+\frac{1}{x})}<1\]
\[a\ge 1\]
这里要严谨的话必须验证$\lim_{x\to\infty}\left(-2x+\frac{2}{\ln(1+\frac{1}{x})}\right)=1$,但鉴于楼主非要要求什么初等做法,那只能拉倒,做不到!

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2020-4-10 17:01
取对数,作倒代换 `x\to1/x`,再去分母,不等式变成
\[(2+ax)\ln(1+x)>2x,\]令
\[f(x)=(2+ax)\ln(1+x)-2x,\quad x\geqslant0,\]求导
\[f'(x)=\frac{a(1+x)\ln(1+x)+ax-2x}{1+x},\]再令
\[g(x)=a(1+x)\ln(1+x)+ax-2x,\]再求导
\[g'(x)=a\ln(1+x)+2a-2,\](1)若 `a\geqslant 1` 则显然对 `x>0` 恒有 `g'(x)>0`,然后 `g(0)=0`, `g(x)>0`, `f'(x)>0`, `f(0)=0`, `f(x)>0`,符合;

(2)若 `a\leqslant0` 则与(1)完全相反(不等式全反向),当然不符合;

(3)若 `0<a<1` 则
\[g'(x)<0\iff\ln(1+x)<\frac2a-2\iff x<e^{2/a-2}-1,\]由 `0<a<1` 知上式右边为正,即当 `x\in(0,e^{2/a-2}-1)` 时 `g'(x)<0`,所以在此区间上和(2)一样也不符合。

综上即得 `a\geqslant1` 就是所求范围。

1

Threads

6

Posts

0

Reputation

Show all posts

theonly posted 2020-4-12 22:04
标准初等过程

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2020-4-12 23:26
回复 4# theonly


动用导数就已经是高等了,别跟我说你们认为用导数是初等用极限却是高等

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 20:48 GMT+8

Powered by Discuz!

Processed in 0.015031 seconds, 25 queries