Forgot password?
 Register account
View 1932|Reply 2

[几何] 两道几何最值

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-4-11 13:19 |Read mode
Last edited by hbghlyj 2020-4-11 20:491.正方形ABCD中两点E,F,使得BE=EF=DF,BE∥DF,∠ABE的最小值为
对合.png
2.点A,B在半径为1的圆O上,∠AOB=90°,延长OA至G使得AG=OA,在OB上取点F,点D在圆弧AB上移动,求4DF+DG的最小值
对合.png

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-4-11 13:24
1.设正方形中心为O,BE=2EO,∠ABE$\ge$60°
对合.png

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-4-11 21:51
2.设$\angle AOD=x,0\leq x\leq \cos ^{-1}\left(\frac{4}{5}\right)$,则$4DF+DG=4FG-3DG=4 \sqrt{\left(\frac{2 \sin (x)}{2-\cos (x)}\right)^2+4}-3 \sqrt{\sin ^2(x)+(\cos (x)-2)^2}=\left(\frac{8}{2-\cos (x)}-3\right) \sqrt{5-4 \cos (x)}:=f(x)$,$f'(x)=\frac{2 \sin (x) \sqrt{5-4 \cos (x)} \left(3 \cos ^2(x)-20 \cos (x)+16\right)}{(\cos (x)-2)^2 (4 \cos (x)-5)}$,$\therefore f(x)\in\left[\frac{11}{\sqrt{5}},\sqrt{\frac{208 \sqrt{13}}{3}-\frac{673}{3}}\right]$,当$x=\cos ^{-1}\left(\frac{4}{5}\right)$即F与B重合时取最小值,当$x=\cos ^{-1}\left(\frac{1}{3} \left(10-2 \sqrt{13}\right)\right)$时取最大值.

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit