|
Author |
hbghlyj
Posted 2020-4-11 21:51
2.设$\angle AOD=x,0\leq x\leq \cos ^{-1}\left(\frac{4}{5}\right)$,则$4DF+DG=4FG-3DG=4 \sqrt{\left(\frac{2 \sin (x)}{2-\cos (x)}\right)^2+4}-3 \sqrt{\sin ^2(x)+(\cos (x)-2)^2}=\left(\frac{8}{2-\cos (x)}-3\right) \sqrt{5-4 \cos (x)}:=f(x)$,$f'(x)=\frac{2 \sin (x) \sqrt{5-4 \cos (x)} \left(3 \cos ^2(x)-20 \cos (x)+16\right)}{(\cos (x)-2)^2 (4 \cos (x)-5)}$,$\therefore f(x)\in\left[\frac{11}{\sqrt{5}},\sqrt{\frac{208 \sqrt{13}}{3}-\frac{673}{3}}\right]$,当$x=\cos ^{-1}\left(\frac{4}{5}\right)$即F与B重合时取最小值,当$x=\cos ^{-1}\left(\frac{1}{3} \left(10-2 \sqrt{13}\right)\right)$时取最大值. |
|