Forgot password?
 Register account
View 1755|Reply 2

[不等式] 又是求最大值

[Copy link]

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2020-4-12 02:12 |Read mode
已知$a,b,c∈[-4,4]$,则 $\sqrt{|a-b|}+\sqrt{|b-c|}+\sqrt{2|c-a|}$的最大值为___

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2020-4-12 12:52
回复 1# facebooker

首先,对于$\sqrt{|a-b|}+\sqrt{|b-c|}+\sqrt{|c-a|}$,这个是轮换对称的,可以假设一个顺序,比如$-4\le c\le b\le a\le 4$,此时有
\[\sqrt{|a-b|}+\sqrt{|b-c|}+\sqrt{|c-a|}=\sqrt{a-b}+\sqrt{b-c}+\sqrt{a-c}\]
\[\le2\sqrt{\frac{a-b+b-c}{2}}+\sqrt{a-c}=(1+\sqrt{2})\sqrt{a-c}\le(1+\sqrt{2})\sqrt{4-(-4)}=2\sqrt{2}+4\]
此时$a,b,c=-4,0,4$轮换都可以取等,而对于原式
\[\sqrt{|a-b|}+\sqrt{|b-c|}+\sqrt{2|c-a|}=\sqrt{|a-b|}+\sqrt{|b-c|}+\sqrt{|c-a|}+(\sqrt{2}-1)\sqrt{|c-a|}\]
\[\le2\sqrt{2}+4+(\sqrt{2}-1)\sqrt{|c-a|}\le2\sqrt{2}+4+(\sqrt{2}-1)\sqrt{|4-(-4)|}=8\]
这个当$(a,b,c)=(-4,0,4)或(4,0,-4)$时取等

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-4-12 15:39
Last edited by hbghlyj 2020-4-12 15:46改编:已知4≥a≥c≥b≥-4,则$\sqrt{a-b}+\sqrt{c-b}+\sqrt{2(a-c)}$的最大值为
设$x=a-b,y=c-b,8≥x≥y≥0$,由柯西不等式,$\sqrt{x}+\sqrt{y}+\sqrt{2(x-y)}\le\sqrt{x}+\sqrt{3x}=(1+\sqrt3)\sqrt x\le2\sqrt2+2\sqrt6$
当$(x,y)=\left(8,\frac83\right)$,也就是$(a,b,c)=\left(4,-4,-\frac43\right)$时取等

Mobile version|Discuz Math Forum

2025-5-31 10:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit