Forgot password
 Register account
View 1982|Reply 6

[不等式] 一道小三元代数最值

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2020-4-13 10:53 |Read mode
a,b,c≥0,$(a-b)^{-2}+(b-c)^{-2}+(c-a)^{-2}=1$,求ab+2bc+3ca的取值范围

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2020-4-13 16:15
设$a'=a-b,c'=c-b$,则$a'^{-2}+c'^{-2}+(a'-c')^{-2}=1$,容易得到4a'+5c'>0,
$ab+2bc+3ca=6b^2+(4a'+5c')b+3c'a'$是关于b的二次函数,对称轴<0,故b=0时取最小值,问题转化为
$a'^{-2}+c'^{-2}+(a'-c')^{-2}=1$,求3a'c'最小值
当$(a',c')=(\sqrt{5}-1,\sqrt{5}+1)(\sqrt{5}+1,\sqrt{5}-1)$时取最小值12

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2020-4-13 16:21
a,b,c≥0,$(a-b)^{-2}+(b-c)^{-2}+(c-a)^{-2}=1$,求ab+2bc+3ca的取值范围
hbghlyj 发表于 2020-4-13 10:53
如果 a,b,c 同时加上(减去)相同的一个正数,条件不变,而所求式递增(递减),因此显然可以无穷大,而最小值则必然有一个变量为零,哪个为零更小?显然是 c,接下来应该不难。

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2020-4-13 17:29
回复 3# kuing
这样说是
当$(a,b,c)=(\sqrt{5}-1,\sqrt{5}+1,0)$或$(\sqrt{5}+1,\sqrt{5}-1,0)$时取最小值4?

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2020-4-13 17:33
回复 2# hbghlyj
这个是典型错误做法了。当c'<0时取不到b=0,否则c<0。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2020-4-13 17:45
回复 4# hbghlyj

嗯,`1/(a-b)^2+1/a^2+1/b^2-4/(ab)=(a^2-3ab+b^2)^2/(a^2b^2(a-b)^2)`

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2020-4-13 18:14
\[\frac1{a^2}+\frac1{b^2}+\frac1{(a-b)^2}-1=\left(\frac{a(a-1)}{a^3b(b-a)}+ \frac1{a^2 b^2} + \frac1{a^2 (b - a)^2}\right)\left(\left(a-b+\frac12 ab\right)^2+\frac14ab(4-ab)\right)\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:59 GMT+8

Powered by Discuz!

Processed in 0.013919 seconds, 22 queries