Forgot password
 Register account
View 1636|Reply 0

[不等式] 简单的求最小值题

[Copy link]

3226

Threads

7843

Posts

52

Reputation

Show all posts

hbghlyj posted 2020-4-13 12:40 |Read mode
Last edited by hbghlyj 2020-4-13 13:13已知圆$C:(x-a)^2+(y-b)^2=r^2(r>0)$与x轴和直线$y=\sqrt3(x+1)$均相切,且$\led
\sqrt3a-b+\sqrt3&\ge0\\\sqrt3a+b-\sqrt3&\le0\\b&\ge0\endled$,则$\frac{ab+r^2}{a^2+b^2}$的最小值为
将$a=\sqrt3b-1$代入,解得$0< b\le \frac{\sqrt3}2$,$\frac{ab+r^2}{a^2+b^2}=\frac{b (-1 + (1+ \sqrt3) b)}{1 - 2 \sqrt3 b + 4 b^2}\ge\frac{1}{2} \left(\sqrt{2}+1\right)$,当$\frac{1}{2} \left(\sqrt{2-\sqrt{3}}+1\right)$时取等

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-23 09:56 GMT+8

Powered by Discuz!

Processed in 0.011518 seconds, 23 queries