Forgot password?
 Register account
View 2290|Reply 2

[不等式] 一些代数题2

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-4-19 19:07 |Read mode
1.a,b,c>0,ab+bc+ca=3,求证$(a+\sqrt a+\sqrt b+\sqrt c)^2≤2(a+b)(b+c)(c+a)$
2.a,b,c>0,求证$\sum\frac {a^3}{\sqrt{b^2-bc+c^2}}≥\sum a^2$
3.解方程$16\{x\}(x+2020\{x\})=[x]^2$
4.a,b,c>0,求证$\sum\frac{a+b}c≥\frac{4(a^2+b^2+c^2)}{ab+bc+ca}+2$
5.a,b,c>0,abc=1,求证$(\sum\sqrt{a^3})^6≥27(a+2)(b+2)(c+2)$
6.$a,b,c≥0,(a+b)(b+c)(c+a)=2,$求证$(a^2+bc)(b^2+ca)(c^2+ab)+8a^2b^2c^2≤1$
resource:MathematicalReflections杂志2020年第2期问题

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-4-20 16:11
Last edited by hbghlyj 2020-4-20 19:243.x=0显然满足.下面设x≠0.由$(x-\{x\})^2=16\{x\}(x+2020\{x\})$得$x=-171\{x\}$或$x=189\{x\}$,
若$x=-171\{x\}$,则$[x]=-1,-2,\cdots,-171,x=[x]-\frac{[x]}{172}$,
若$x=189\{x\}$,则$[x]=1,2,\cdots,187,x=[x]+\frac{[x]}{188}$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-12-12 21:06
1.求证$\sum_{k=0}^{2020}\frac{1}{3^{2^{k}}-3^{-2^{k}}}<\frac{1}{2}$
2.$a,b,c\ge0$且$ab+bc+ca\ne0$,求证$\frac{ab}{2c^{2}+ab}+\frac{bc}{2a^{2}+bc}+\frac{ca}{2b^{2}+ca}\geq\frac{(a^{2}b+a^{2}c+b^{2}a+b^{2}c+c^{2}a+c^{2}b-3abc)(ab+ac+bc)}{(a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2})(a+b+c)}$
3.a,b,c是三角形的三边长,证明$\sqrt{\frac{a(b+c)}{a^{2}+bc}}+\sqrt{\frac{b(c+a)}{b^{2}+ac}}+\sqrt{\frac{c(a+b)}{c^{2}+ab}}\leq3$
4.a+b+c=ab+bc+ca,求证$\sqrt{a^{2}-a+1}+\sqrt{b^{2}-b+1}+\sqrt{c^{2}-c+1}\geq a+b+c$,
证明$(a^{2}-a+2)(b^{2}-b+2)(c^{2}-c+2)(d^{2}-d+2)\geq(a+b+c+d)^{2}+(a+b+c+d-4)^{2}$.
来源

Mobile version|Discuz Math Forum

2025-5-31 10:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit