Forgot password?
 Register account
View 1709|Reply 2

[不等式] 几个不等式

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2020-4-23 16:59 |Read mode
几个不等式:
1.已知实数$0<a,b,c,d\leqslant\frac{1}{2}$,求证: $\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{1}{d^2}\geqslant 6+\dfrac{20}{a+b+c+d}$.
2.已知正数$a,b,c$满足$a+b+c=3$,求证:$1<\dfrac{a}{\sqrt{3a+b}}+\dfrac{b}{\sqrt{3b+c}}+\dfrac{c}{\sqrt{3c+a} }\leqslant \frac{3}{2}$。
3.已知正数$a,b,c$满足$a+b+c+2=abc$,求证:$(1+\sqrt{ab})+(1+\sqrt{bc})+(1+\sqrt{ca})\geqslant 27$.
4.已知正数$x,y,z$,若不等式$4x^2+y^2+3z^2\geqslant \lambda (2xy+3yz)$恒成立,求$\lambda $的最大值。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-4-23 19:16
Last edited by hbghlyj 2020-4-23 19:254.由$4x^2+y^2+3z^2-(2xy+3yz)=\left(2x-\frac y2\right)^2+\frac34 (y - 2 z)^2$得$\lambda\le1$
$x:y:z=1:4:2$时取等

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2020-4-23 20:31
437也就是这里的4都烂大街了。

Mobile version|Discuz Math Forum

2025-5-31 10:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit