|
Author |
hbghlyj
Posted 2020-8-14 12:52
Last edited by hbghlyj 2020-8-14 12:58等价于证明$(1-\sin A\sin B)+(1-\sin A\sin C)\ge 1-\sin B\sin C$
$\Leftrightarrow1-\sin A\sin B\ge \sin C(\sin A-\sin B)$
这是显然的.因为$1-\sin A\sin B=1-\frac{\cos(A-B)-\cos(A+B)}{2}=$
$=\frac{1-\cos(A-B)}{2}+\frac{1+\cos(A+B)}{2}=\sin^2\left(\frac{A-B}{2}\right)+\cos^2\left(\frac{A+B}{2}\right)\ge$
$\ge \left|2\sin\left(\frac{A-B}{2}\right)\cos\left(\frac{A+B}{2}\right)\right|\ge 2\sin\left(\frac{A-B}{2}\right)\cos\left(\frac{A+B}{2}\right)\sin C=$
$=(\sin A-\sin B)\sin C.$ |
|