Forgot password?
 Register account
View 2147|Reply 1

[不等式] 证明外接圆直径减各高可构成三角形

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-4-23 23:06 |Read mode
在$\triangle ABC$中,证明以$1-\sin B\sin C,1-\sin C\sin A,1-\sin A\sin B$为边长可构成三角形
QQ图片20200423174357.jpg

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-8-14 12:52
Last edited by hbghlyj 2020-8-14 12:58等价于证明$(1-\sin A\sin B)+(1-\sin A\sin C)\ge 1-\sin B\sin C$
$\Leftrightarrow1-\sin A\sin B\ge \sin C(\sin A-\sin B)$
这是显然的.因为$1-\sin A\sin B=1-\frac{\cos(A-B)-\cos(A+B)}{2}=$
$=\frac{1-\cos(A-B)}{2}+\frac{1+\cos(A+B)}{2}=\sin^2\left(\frac{A-B}{2}\right)+\cos^2\left(\frac{A+B}{2}\right)\ge$
$\ge \left|2\sin\left(\frac{A-B}{2}\right)\cos\left(\frac{A+B}{2}\right)\right|\ge 2\sin\left(\frac{A-B}{2}\right)\cos\left(\frac{A+B}{2}\right)\sin C=$
$=(\sin A-\sin B)\sin C.$

Mobile version|Discuz Math Forum

2025-5-31 11:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit