Forgot password?
 Register account
View 2325|Reply 4

[几何] 三个等速旋转点的外心

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-4-24 13:28 |Read mode
Last edited by hbghlyj 2020-5-4 16:32 欧拉判别法.png
圆A与圆B相切于O,点C在圆A上运动,点D在圆B上运动,使得AC,BD的夹角为定值α,求证:OCD的外心E的轨迹为过A,B的圆
欧拉判别法.png
证明:设AC,BD交于R,取P使PA=PB,∠APB=α.T为以P为中心,180°-∠APR的旋转,T(A,B,C,D,O,R)=(A',B',C',D',O',R'),则AR'平分∠A'R'B',设B'R'再次交圆P于E,则T(E)=A,下面证明A为△C'D'O'的外心,从而E为△CDO的外心,易见E的轨迹为圆P.
设β=∠B'R'P,∵C'A'+A'B'=B'D',∴C'A'·B'P+AP·A'B'=B'D'·A'P,C'A'sinβ+APsinα=B'D'sinβ①
∵ABPR共圆,∴A'B'PR'共圆,∴A'R'sinβ+PR'sinα=R'B'sinβ②
①+②,C'R'sinβ+AR'sinα=R'D'sinβ,∴AR'C'D'共圆,又AR'平分∠A'R'B',∴AC'=AD'.
∵∠C'O'D'=∠COD=∠COA-∠BOD=α/2=∠C'R'D'/2=∠C'AD'/2,∴AO'=AC'=AD'.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-4-24 22:50
可能有关的定理:
欧拉判别法.png
P为$\triangle DEF$的密克点,O为$\triangle ABC$的外心,O'为$\triangle O_1O_2O_3$的外心,则PO'=OO'

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-4-25 00:06
Last edited by hbghlyj 2020-4-26 08:35两道题的统一:
欧拉判别法.png
点A,B,C分别以$O_1,O_2,O_3$为中心等角速度旋转,则△ABC的外心的轨迹loc何时是圆?
现在已经探明的情况:
(1)当三圆共点,以所共之点为A,B,C的起点时,loc是圆(2#)
(2)当三圆两两相切,且AO1∥BO2∥CO3时loc是圆
特别地,当三圆两两相切且圆心共线,一个切点为P,ABCP为矩形时loc是圆;当两圆相切,第三个圆缩到切点时loc是圆(1#)
欧拉判别法.png

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-4-26 08:34
Last edited by hbghlyj 2020-5-10 19:37用下面的方法可将问题化归到两圆一点的情形,从而将3#(2)化归到1#:
设A,B绕$O_1,O_2$作角速度为$\omega$的圆周运动,$A=O_1+r_1e^{i(\omega t+\phi_1)},B=O_2+r_2e^{i(\omega t+\phi_2)}$,则$B-A=O_2-O_1+(r_1e^{i\phi_1}+r_2e^{i\phi_2})e^{i\omega t}$,所以B-A绕$O_2-O_1$作角速度也为$\omega$的圆周运动(这里用的是复数法,也可用参数方程+辅助角公式)

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-5-8 17:22
Last edited by hbghlyj 2020-5-10 13:35我想我已经把握了这个问题的核心了。就是三个圆有两个位似旋转中心P,也就是使得$PA:PB:PC=r_1:r_2:r_3$的点。让AD,BE,CF从AP,BP,CP开始等速旋转,则O的轨迹是圆。这两个圆的中心都是△ABC的外心O。
等面三面角.png
$type 位似旋转.ggb (20.19 KB, Downloads: 4469)

Mobile version|Discuz Math Forum

2025-5-31 10:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit