Last edited by hbghlyj 2020-5-4 16:32
圆A与圆B相切于O,点C在圆A上运动,点D在圆B上运动,使得AC,BD的夹角为定值α,求证:OCD的外心E的轨迹为过A,B的圆
证明:设AC,BD交于R,取P使PA=PB,∠APB=α.T为以P为中心,180°-∠APR的旋转,T(A,B,C,D,O,R)=(A',B',C',D',O',R'),则AR'平分∠A'R'B',设B'R'再次交圆P于E,则T(E)=A,下面证明A为△C'D'O'的外心,从而E为△CDO的外心,易见E的轨迹为圆P.
设β=∠B'R'P,∵C'A'+A'B'=B'D',∴C'A'·B'P+AP·A'B'=B'D'·A'P,C'A'sinβ+APsinα=B'D'sinβ①
∵ABPR共圆,∴A'B'PR'共圆,∴A'R'sinβ+PR'sinα=R'B'sinβ②
①+②,C'R'sinβ+AR'sinα=R'D'sinβ,∴AR'C'D'共圆,又AR'平分∠A'R'B',∴AC'=AD'.
∵∠C'O'D'=∠COD=∠COA-∠BOD=α/2=∠C'R'D'/2=∠C'AD'/2,∴AO'=AC'=AD'. |