Forgot password?
 Register account
View 1508|Reply 6

[组合] 一道有关数学期望题目

[Copy link]

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

dahool Posted 2020-4-28 09:54 |Read mode
有$2019$个人,每个人从集合$\{1,2,\cdots,2019\}$中等概率的挑选一个数,这些数为$a_1,a_2,\cdots,a_{2019}$,令$A$为这些数构成的集合,例如:$a_1=a_2=\cdots=a_{2018}=1,a_{2019}=2$,则$A=\{1,2\}$,求集合$A$的元素个数的数学期望.

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2020-4-28 12:54
Last edited by 战巡 2020-4-28 17:50回复 1# dahool

如果令$N$为集合总数(这里$N=2019$,但我们可以探寻更一般的情况),然后令$m_n$为第$n$个人挑选完后构成的集合元素个数

显然有$m_1=1$, $P(m_2=1)=\frac{1}{N}, P(m_2=2)=\frac{N-1}{N}$,然后当给定了$m_n$以后,会有
\[P(m_{n+1}=m_n|m_n)=\frac{m_n}{N}\]
\[P(m_{n+1}=m_n+1|m_n)=\frac{N-m_n}{N}\]
而后
\[E[m_{n+1}|m_n]=P(m_{n+1}=m_n|m_n)m_n+P(m_{n+1}=m_n+1|m_n)(m_n+1)\]
\[=\frac{m_n^2}{N}+\frac{N-m_n}{N}(m_n+1)=1+m_n(1-\frac{1}{N})\]
也就是
\[E[m_{n+1}]=E[E[m_{n+1}|m_n]]=E[1+m_n(1-\frac{1}{n})]=1+(1-\frac{1}{N})E[m_{n}]\]
然后就有
\[E[m_n]=N-N\left(\frac{N-1}{N}\right)^n\]
当$n=N=2019$
\[E[m_{2019}]=2019-2019\left(\frac{2018}{2019}\right)^{2019}\]

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

 Author| dahool Posted 2020-4-28 16:27
回复 2# 战巡


  验证了一下N=n=3的时候,貌似这个计算的式子不对

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

 Author| dahool Posted 2020-4-28 16:33
验证了n=3,4的时候
推测N=n时的式子为$\frac{n[n^n-(n-1)^n]}{n^n}$

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

 Author| dahool Posted 2020-4-28 16:41
回复 4# dahool

这个式子可以有很多种变形,但是没理解好怎么直接与数学期望联系起来

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2020-4-28 17:54
回复 3# dahool


已经改了,前面一个输入错误导致后面算错

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

 Author| dahool Posted 2020-4-28 18:53
回复 6# 战巡


十分感谢!

Mobile version|Discuz Math Forum

2025-6-3 07:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit