|
A2-metricspaces.pdf page 36 of 68
COROLLARY 5.1.5. Let $X$ be a metric space, and let $S \subseteq X$ be a subset. Let $a \in X$. Then a lies in the closure $\bar{S}$ if and only if there is a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ of elements of $S$ with $\lim _{n \rightarrow \infty} x_{n}=a$. In particular, $S$ is closed if and only if the limit of every convergent sequence $\left(x_{n}\right)_{n=1}^{\infty}$ of elements of $S$ lies in $S$.
Proof. We use Lemma 5.1.4. Suppose that $a \in \bar{S}$. Then by Lemma 5.1.4 every ball $B(a, 1 / n)$ contains a point of $S$, so we may pick a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ with $x_{n} \in B(a, 1 / n) \cap S$. Clearly $\lim _{n \rightarrow \infty} x_{n}=a$.
Conversely, suppose $\lim _{n \rightarrow \infty} x_{n}=a$, where $x_{n} \in S$. If $a \notin \bar{S}$ then by Lemma 5.1.4 there must be some ball $B(a, \varepsilon)$ not meeting $S$. But if $n$ is large enough then $d\left(x_{n}, a\right)<\varepsilon$, and so $x_{n} \in S \cap B(a, \varepsilon)$, contradiction. $\square$ |
|