Forgot password?
 Register account
View 1886|Reply 7

[不等式] 一道n元不等式

[Copy link]

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

dahool Posted 2020-5-2 22:36 |Read mode
设$a_i\inR^+,i=1,2,\cdots,n$,满足:$$\sum_{i=1}^nia_i=\frac{1}{2}n(n+1)$$求证:$$\sum_{i=1}^n \frac{1}{1+(n-1)a_i^i}\geqslant 1$$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-5-2 23:20
第一反应自然是切线法,只需证
\[\frac1{1+(n-1)x^k}\geqslant\frac{1-n}{n^2}k(x-1)+\frac1n,\quad(x\geqslant0,k\leqslant n)\]至于怎么证这个……我暂时还没看出有啥巧妙的方法,但大概《撸题集》P.5 定理 1.1.1′  好像适用……

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

 Author| dahool Posted 2020-5-3 14:02
回复 2# kuing

谢谢

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

 Author| dahool Posted 2020-5-3 14:04
Last edited by dahool 2020-5-3 14:25设$$A=\sum_{i=1}^{n}\frac{1}{1+(n-1)a_i^i},B=\sum_{i=1}^{n}\frac{a_i^i}{1+(n-1)a_i^i}$$
则$A+(n-1)B=n$,故只需证$$\sum_{i=1}^{n}\frac{a_i^i}{1+(n-1)a_i^i}\leqslant1$$
又有$$1+(n-1)a_i^i \geqslant na_i^{\frac{(n-1)i}{n}}$$
则只需证$$\sum_{i=1}^{n}a_i^{\frac{i}{n}}\leqslant n$$
又$$ia_i+(n-i)\geqslant na_i^{\frac{i}{n}}$$

$$\sum_{i=1}^{n}a_i^{\frac{i}{n}}\leqslant\frac{1}{n}[\sum_{i=1}^{n}ia_i+\sum_{i=1}^{n}(n-i)]=n$$
证毕.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-5-3 14:34
回复 4# dahool

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

 Author| dahool Posted 2020-5-3 15:13
[b]回复 5# kuing

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-5-3 15:18
于是 2# 的切线也就可以这样证了:
\begin{align*}
&\mathrel{\phantom{\iff}}\frac1{1+(n-1)x^k}\geqslant\frac{1-n}{n^2}k(x-1)+\frac1n\\
&\iff\frac1{1+(n-1)x^k}-1\geqslant\frac{1-n}{n^2}k(x-1)+\frac{1-n}n\\
&\iff\frac{x^k}{1+(n-1)x^k}\leqslant\frac1{n^2}k(x-1)+\frac1n\\
&\liff\frac{x^k}{nx^{(n-1)k/n}}\leqslant\frac1{n^2}k(x-1)+\frac1n\\
&\iff x^{k/n}\leqslant\frac knx+1-\frac kn,
\end{align*}最后一式就是加权均值显然成立。

46

Threads

323

Posts

2834

Credits

Credits
2834

Show all posts

业余的业余 Posted 2020-5-4 02:44
精彩,学习!

Mobile version|Discuz Math Forum

2025-5-31 11:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit