Forgot password
 Register account
View 2533|Reply 3

[不等式] 请教一个不等式

[Copy link]

34

Threads

98

Posts

0

Reputation

Show all posts

hongxian posted 2013-7-25 19:38 |Read mode
求证:$\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{n}}}}<2$  $n\in N^*$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-7-25 21:04
见附件
$type

页面提取自-20120723090724970.pdf

309.17 KB, Downloads: 5600

34

Threads

98

Posts

0

Reputation

Show all posts

original poster hongxian posted 2013-7-27 08:21
回复 2# kuing


    从$n$到1的归纳,见识了!
\(\sqrt{1+\sqrt{2+\cdots+\sqrt{n-1+\sqrt{n}}}}<\sqrt{1+\sqrt{4+\cdots+\sqrt{4^{n-2}+\sqrt

{4^{n-1}}}}}<\sqrt{1+\sqrt{4+\cdots+\sqrt{4^{n-2}+\sqrt{4^{n-1}+1}}}}=2\)
太巧妙了!然来此题放缩空间如此之大!

另外:这个杂志是不是也是出自k的制作?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-7-27 12:45
回复 3# hongxian

这种归纳之前在《数学空间》总第11期 P23 已经点评过……

PS、那是中国不等式小组的内部刊物,跟我没关系的,其实你看排版就知道显然不是我制作的嘛。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:07 GMT+8

Powered by Discuz!

Processed in 0.014764 seconds, 25 queries