Forgot password?
 Register account
View 2520|Reply 3

[不等式] 请教一个不等式

[Copy link]

34

Threads

98

Posts

929

Credits

Credits
929

Show all posts

hongxian Posted 2013-7-25 19:38 |Read mode
求证:$\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{n}}}}<2$  $n\in N^*$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2013-7-25 21:04
见附件
$type

页面提取自-20120723090724970.pdf

309.17 KB, Downloads: 5589

34

Threads

98

Posts

929

Credits

Credits
929

Show all posts

 Author| hongxian Posted 2013-7-27 08:21
回复 2# kuing


    从$n$到1的归纳,见识了!
\(\sqrt{1+\sqrt{2+\cdots+\sqrt{n-1+\sqrt{n}}}}<\sqrt{1+\sqrt{4+\cdots+\sqrt{4^{n-2}+\sqrt

{4^{n-1}}}}}<\sqrt{1+\sqrt{4+\cdots+\sqrt{4^{n-2}+\sqrt{4^{n-1}+1}}}}=2\)
太巧妙了!然来此题放缩空间如此之大!

另外:这个杂志是不是也是出自k的制作?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2013-7-27 12:45
回复 3# hongxian

这种归纳之前在《数学空间》总第11期 P23 已经点评过……

PS、那是中国不等式小组的内部刊物,跟我没关系的,其实你看排版就知道显然不是我制作的嘛。

Mobile version|Discuz Math Forum

2025-5-31 10:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit