Forgot password?
 Register account
View 1647|Reply 2

[函数] 极值大小估计

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2020-5-15 12:06 |Read mode
求证:函数$f(x)=e^x+\sin x$在$(-\pi,0)$上存在唯一的极小值点$x_0$, 并证明$f(x_0)<0$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-5-15 16:48
没啥难度啊
`f'(x)=e^x+\cos x`, `f''(x)=e^x-\sin x`,在 `(-\pi,0)` 上显然恒有 `f''(x)>0`,即 `f'(x)` 单增,而 `f'(-\pi)=e^{-\pi}-1<0`, `f'(0)=2`,所以在 `(-\pi,0)` 上存在唯一的 `x_0` 使 `f'(x_0)=0` 且为极小值点。
然后由 `e^{x_0}+\cos x_0=0` 得 `f(x_0)=e^{x_0}+\sin x_0=-\cos x_0+\sin x_0`,故要证 `f(x_0)<0` 即证 `x_0>-3\pi/4`,再由 `f'(x)` 单增,只需证 `f'(-3\pi/4)<0`,即证 `e^{-3\pi/4}-1/\sqrt2<0`,即证 `e^{-3\pi/2}<1/2`,显然地 `e^{-3\pi /2}<1/e<1/2`,即得证。

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2020-5-15 21:23
谢谢Kuing

Mobile version|Discuz Math Forum

2025-5-31 10:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit