Forgot password?
 Register account
View 1773|Reply 3

[几何] 抛物线与圆

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10991

Show all posts

lemondian Posted 2020-5-15 14:26 |Read mode
51501.jpg

686

Threads

110K

Posts

910K

Credits

Credits
91224
QQ

Show all posts

kuing Posted 2020-5-15 15:40
一、S 不是取决于 r 吗?为什么不是 S(r) 而是 S(x)?
二、“过交点的直线围成的封闭图形”该怎么理解?像图1那样的话,应该还要把 DA 和 CB 延长交于 E,该封闭图形是 `\triangle CDE`,而不是四边形 ABCD?

413

Threads

905

Posts

110K

Credits

Credits
10991

Show all posts

 Author| lemondian Posted 2020-5-15 15:49
Last edited by lemondian 2020-5-15 21:37回复 2# kuing
不清楚呀,这是“数学通报”的问题,原题截下来的。

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

郝酒 Posted 2020-5-15 15:55
我来解一下,一二问应该是S(r)吧。感觉这资料很详实,2537啦,多功能题典吗?
联立方程消元得 $x^2-7x+16-r^2=0$,德尔塔为$4r^2-15>0$,
韦达一用$x_1+x_2=7,x_1x_2=16-r^2>0$
$S(r)=\frac{1}{2}(2\sqrt{x_1}+2\sqrt{x_2})\left|x_2-x_1\right|$
化简后得$S(r)=(7+2\sqrt{16-r^2})\sqrt{7-2\sqrt{16-r^2}}$
换元$s=\sqrt{16-r^2}\in\left[0,\frac{7}{2}\right)$
得$y=(7+2s)\sqrt{7-2s}$再换一次$u=\sqrt{7-2s}\in \left(0,\sqrt{7} \right]$,$y=(14-u^2)u$,$u=\sqrt{\frac{14}{3}}$时最大.此时$r^2=16-\frac{49}{36}$
用AC与x轴交点算P点坐标:$y-\sqrt{x_1}=\frac{1}{\sqrt{x_1}-\sqrt{x_2}}(x-x_1)$,令$y=0$得$x_P=\sqrt{x_1x_2}=\sqrt{16-r^2}=\frac{7}{6}$,没太懂几何性是啥。

Mobile version|Discuz Math Forum

2025-6-1 19:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit