Forgot password?
 Register account
View 1017|Reply 2

求证三个等式

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2020-5-16 10:26 |Read mode
试证明三个等式:
(1)设$f(x)=(x-a_1)(x-a_2)\cdots (x-a_n),a_1,a_2,\cdots ,a_n\inR$且两两不相等,$n\inN且n\geqslant 3$,证明:\[  \sum_{i=1}^n\frac{a_i}{f'(a_i)}=0\]
(2)设$f(x)=(x-a_1)(x-a_2)\cdots (x-a_n),a_1,a_2,\cdots ,a_n\inR$且两两不相等,$n\inN且n\geqslant 2$,证明:\[  \sum_{i=1}^n\frac{1}{f'(a_i)}=0\]
(3)设$f(x)=(x-a_1)(x-a_2)\cdots (x-a_n),a_1,a_2,\cdots ,a_n\inR$且两两不相等,$n\inN且n\geqslant 2,k\inN$,证明:\[  \sum_{i=1}^n\frac{a_{i}^{k}}{f'(a_i)}=0\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-5-16 11:27
第(1)(2)问见《撸题集》P.912 题目 6.8.12;

第(3)问是你自己加的吧?如果是,那我建议你写上“猜想”,而不是“证明”,小心坑人。

事实上(3)需要 `k\leqslant n-2` 才成立,大于就不是了,比如 `k=n-1` 时会 `=1`(证法与《撸题集》里一样),`k=n` 时为 `a_i` 之和(证法将与《撸题集》有点差别)等等……

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2020-5-16 18:46
我哩度有$k\ge n$

artofproblemsolving.com/community/u345311h1987134p14044769

$\displaystyle S_N=\sum_{i=1}^m x_i^N \prod_{j=1\atop i\neq j}^m\frac{1}{x_i-x_j}=\begin{cases}0 & 0\le N\le m-2\\1 & N=m-1\\
\displaystyle
\boxed{\sum_{r_1 + 2r_2 + \cdots + nr_n = n \atop r_1\ge 0, \ldots, r_n\ge 0} (-1)^n \frac{(r_1 + r_2 + \cdots + r_n)!}{r_1!r_2! \cdots r_n!} \prod_{i=1}^n (-\sigma_i)^{r_i}} & N=n+m-1\ge m
\end{cases}$

Mobile version|Discuz Math Forum

2025-5-31 11:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit