试证明三个等式:
(1)设$f(x)=(x-a_1)(x-a_2)\cdots (x-a_n),a_1,a_2,\cdots ,a_n\inR$且两两不相等,$n\inN且n\geqslant 3$,证明:\[ \sum_{i=1}^n\frac{a_i}{f'(a_i)}=0\]
(2)设$f(x)=(x-a_1)(x-a_2)\cdots (x-a_n),a_1,a_2,\cdots ,a_n\inR$且两两不相等,$n\inN且n\geqslant 2$,证明:\[ \sum_{i=1}^n\frac{1}{f'(a_i)}=0\]
(3)设$f(x)=(x-a_1)(x-a_2)\cdots (x-a_n),a_1,a_2,\cdots ,a_n\inR$且两两不相等,$n\inN且n\geqslant 2,k\inN$,证明:\[ \sum_{i=1}^n\frac{a_{i}^{k}}{f'(a_i)}=0\] |