|
Author |
hbghlyj
Posted 2020-7-12 23:24
Last edited by hbghlyj 2020-7-13 16:34
设$P_1,P_2,P_3$分别在$A_2A_3,A_3A_1,A_1A_2$上,$A_2P_1=Q_1A_3=m_1,A_3P_2=Q_2A_1=m_2,A_1P_3=Q_3A_2=m_3,$由共角定理,$S_{A_1P_2P_3}=\frac{(a_2-m_2)m_3}{a_2a_3}S_{ABC}$,但$S_{P_1P_2P_3}=S_{ABC}-\sum S_{A_1P_2P_3}=S_{ABC}\left(1-\sum\frac{(a_2-m_2)m_3}{a_2a_3}\right)=S_{ABC}\left(1-\sum k_1+\sum k_2k_3\right)$
作代换$k_i\to 1-k_i$后不变,所以
两个三角形的顶点 ,都在一个已知三角形的边上,并且到边的中点距离相等,则这两个三角形面积相等.
作代换$k_i\to 1-k_{i+1}$后不变,所以
设三角形$P_1P_2P_3$内接于三角形$A_1A_2A_3$,又设$P_1Q_2$平行于$A_1A_2$,交$A_1A_3$于$Q_2$,等,则$S_{P_1P_2P_3}=S_{Q_1Q_2Q_3}$,特别地,设$P_1P_2P_3$共线,则$Q_1Q_2Q_3$共线.
-------------------
对于一楼的三角形,设
$M=k_{12}k_{23}k_{31}(\sum k_{21}-1)+k_{21}k_{32}k_{13}(\sum k_{12}-1)-\sum k_{12}k_{13}k_{21}k_{31}$
$N=k_{12} k_{31}-k_{12} k_{32}+k_{13} k_{32}$
作代换$k_i\to 1-k_i$后
$M=M'+\left(k_{12}+k_{21}-1\right) \left(k_{13}+k_{31}-1\right) \left(k_{23}+k_{32}-1\right)$
$N=N'+k_{13}+k_{31}-1$ |
|