Forgot password?
 Register account
View 1991|Reply 6

[几何] 过定点的两条弦的关系

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-6-1 13:13 |Read mode
Last edited by 2020-6-1 23:01俺刚注册论坛...还太不会发帖...
等面三面角.gif
已知定点P、定圆O,过P作两条垂直的动弦AB,CD,求证$AB^2+CD^2$为定值
已知定点P、定圆O、定角α,过P作两条动弦AB,CD,它们的夹角是α,那么AB,CD有什么关系?

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2020-6-1 14:39
垂直的情况:设 `AB`, `CD` 到 `O` 的距离分别为 `d_1`, `d_2`,则
\[AB^2+CD^2=4(r^2-d_1^2)+4(r^2-d_2^2)=8r^2-4OP^2.\]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-6-1 23:26
Last edited by isee 2020-6-1 23:32回复 1# ellipse


以主楼图标记$\angle APC=\alpha$,$OP=d$,则$AB^2=4\left(r^2-d^2\require{cancel}\cancel{\sin^2\frac\alpha2}\right)$,算不算?

角错了,请无视,否则两角和为$\alpha$,想消角估计也不算容易

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-6-2 01:46
回复 3# isee

硬消总可以,但表达式估计很复杂,没啥意思……
大概酱紫:为方便起见令 `AB=2x`, `CD=2y`, `OP=d`, `\angle APO=t`, `\angle CPO=u`,
则 `x^2=r^2-d^2\sin^2t`, `y^2=r^2-d^2\sin^2u`,
当 `O` 在角内时 `\cos\alpha=\cos(t+u)=\cos t\cos u-\sin t\sin u`,
移项平方 `(\cos\alpha+\sin t\sin u)^2=(1-\sin^2t)(1-\sin^2u)`,
左边展开后再次移项平方,就可以代入上面那些 `\sin^2` 了……

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-6-2 14:55
回复 4# kuing

还真行,直接带着根号算了

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-6-2 22:46
回复 4# kuing
消元,得
$\left(d^2-2 r^2+x^2+y^2\right)^2-2(\left(d^2-2 r^2\right) \left(d^2+x^2+y^2\right)+2r^4+2x^2y^2)\cos^2\alpha+d^4\cos^4\alpha=0$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-6-3 04:16
回复 6# hbghlyj

比想象中好看

Mobile version|Discuz Math Forum

2025-5-31 10:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit