Forgot password?
 Register account
View 2151|Reply 2

[几何] 用向量处理辅助角公式,两直线夹角公式

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2013-11-6 11:56 |Read mode
$acosx+bsinx=\sqrt{a^2+b^2}\sin{(x+x_0)}=(a,b)·(\cos x,\sin x)$,可配合图象理解.
以及$\tan θ=\frac{k_1-k_2}{1+k_1k_2}$----两个在课本上都已经删去.
例:过点P(1,2)的直线l被两平行线$l_1:4x+3y+1=0$与$l_2:4x+3y+6=0$截得的线段长│AB│=$\sqrt{2}$,求直线l的方程.
$l_1$上取两点(-1,1),(2,-3),得到与$l_1$平行的向量$\vv{a}=(3,-4)$,直线l上任意一点坐标为(x,y),$\vv{b}=(x-1,y-2)=(s,t)$
两向量夹角为45°或135°,得到$\frac{\sqrt2}{2}=\frac{\abs{3s-4t}}{5\sqrt{s^2+t^2}}$,
即$7t^2-48st-7s^2=(7t+s)(t-7s)=0$,得到$7t+s=0,或t-7s=0$, 即$x+7y-15=0或7x-y-5=0$

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-10-20 20:35

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2017-10-21 10:13
未命名.PNG

办法总会有,计算题就看数据是否简单。

Mobile version|Discuz Math Forum

2025-5-31 10:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit