Forgot password?
 Register account
View 1907|Reply 2

[几何] 圆内接四边形对角线延长

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-6-6 22:15 |Read mode
Last edited by hbghlyj 2024-12-28 23:53 等面三面角.png
A,B,C,D共圆,AD交BC于E,为了计算AE,注意到$\overline{AD}\cdot\overline{ AE}=2\vec{OA}\cdot\vec{EA}$关于BC上的动点E为线性,故
$AD\cdot AE=\frac{CE\cdot AB^2-EB\cdot AC^2}{BC}=\frac{AC\cdot CD\cdot AB^2-AB\cdot BD\cdot AC^2}{AC\cdot CD-AB\cdot BD}=\frac{AB\cdot AC( AB\cdot CD-AC\cdot BD)}{AC\cdot CD-AB\cdot BD}=\frac{AB\cdot AC·BC·AD}{AB\cdot BD-AC\cdot CD}$
即$AE=\frac{AB\cdot AC·BC}{AB\cdot BD-AC\cdot CD}$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-6-6 22:30
等面三面角.png
等面三面角.png
由线性立即得到:
B为AC中点,PA,PB,PC再次交过P的圆于A',B',C',则$PB\cdot PB'$为$PA\cdot PA',PC\cdot PC'$的等差中项
传统的书中(如奥赛经典,它经常一堆命题互证)通常这样证明:
法一、关于P反演,等价于:过P作动直线与两条定直线交于A,A',则$\frac{PA}{PA'}$关于动点A为线性(梅氏定理)
法二、由PB为△PAC的中线,$PA:\sin\angle BPC=2PB:\sin\angle APC=PC:\sin\angle APB$,由PA'B'C'共圆,$PA'\cdot \sin\angle B'PC'+PC‘\sin\angle A’PB‘=PB'\sin\angle A'PC'$,所以$PA'\cdot PA+PC'\cdot PC=2PB'\cdot PB$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-6-6 23:28
下面是从“一些平面几何”那个收集帖的14#移过来的一道题,原证是变成θ的三角函数化简
等面三面角.gif
D是△ABC外接圆上一点,AD,BD,CD交对边于P,Q,R,求证$\frac{\cos A}{AP}+\frac{\cos C}{CR}=\frac{\cos B}{BQ}$
代入1#公式,注意有向线段的符号,只需证明
$(AB·BD - AC·CD)\cos A+ (BC·BD - AC·AD)\cos C=(BC·CD + AB·AD)\cos B$
代入余弦定理,
$(AB·BD - AC·CD)·BC (AB^2 + AC^2 - BC^2) - (BC·CD + AB·AD)·
   AC (BC^2 + AB^2 - AC^2) + (BC·BD - AC·AD)·
   AB (BC^2 + AC^2 - AB^2) =-2 AB·AC·BC (AD·BC - AC·BD + AB·CD)$,由托勒密定理得证。

Mobile version|Discuz Math Forum

2025-5-31 11:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit