Forgot password?
 Register account
View 1864|Reply 1

[几何] 一道导角题

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-6-7 13:32 |Read mode
Last edited by hbghlyj 2020-6-7 22:48 QQ图片20200607000557.jpg
D关于AB,BC的对称点为$D_c,D_a$,直线$D_cD_a$交AO,BC于M,P,求证:ABCD共圆$\Leftrightarrow$DMOP共圆
∵BD=BDc=BDa
∴∠[PM,AB] = ∠[DDa,DB]
∴∠[DDc,DB]=∠[DDc,DDa] + ∠[DDa,DB]= ∠[BA,BP]+∠[PDc,AB]=∠[PDc,PB]
∴BDDcP共圆

∵∠[OM,ADc] =∠[OM,AB] +∠[AB,ADc]=∠[BA,BO]+∠[AD,AB] = ∠[AD,BO]
∠[BD,ADc] =∠[DB,DDc] +∠[DcD,DcA] =∠[DcD,DcB]+∠[DA,DDc]= ∠[AD,BDc]
∴∠[OM,BD] =∠[BDc,BO]
∴∠[OM,BDc]=∠[BD,BO]= ∠[DO,DB]
∴∠[OM,OD] = ∠[BDc,BD]

∵∠[PM,BC] =∠[PM,AB] -∠[BC,BA]=∠[DDa,DB]-∠[DDa,DDc]= ∠[DDc,BD]
∴∠[PM,DDc]=∠[BC,BD]
∴∠[PM,PD] =∠[PM,DDc]+∠[DDc,PD]=∠[BC,BD]+∠[BDc,BC]= ∠[BDc,BD]=∠[OM,OD]
∴MOPD共圆

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-6-7 13:34
Last edited by hbghlyj 2020-6-7 15:00 QQ图片20200607000557.jpg
D是△ABC外接圆O上一点,AH,CH再交圆O于E,F,DE,DF交BC,AB于P,Q,CO,AO交PQ于M,N,求证$\frac{MD}{ND}\frac{QD}{PD}=\frac{MO}{NO}\frac{QO}{PO}$
证明:由1#得MOQD,NOPD共圆,其半径记为$r_1,r_2$,用正弦定理,
$\frac{MD}{PD}=\frac{QD}{ND}=\frac{MO}{PO}=\frac{QO}{NO}=\frac{r_1}{r_2}$

Mobile version|Discuz Math Forum

2025-5-31 11:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit