Last edited by 敬畏数学 2020-6-18 18:31权方和不等式一步即可。$ (a^3+b^3+c^3)(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}) =(\dfrac{a^3}{1^2}+\dfrac{b^3}{1^2}+\dfrac{c^3}{1^2})(\dfrac{1^3}{a^2}+\dfrac{1^3}{b^2}+\dfrac{1^3}{c^2})\geqslant \dfrac{(a+b+c)^3}{(1+1+1)^2}\cdot \dfrac{(1+1+1)^3}{(a+b+c)^2}=3$