Forgot password?
 Register account
View 1665|Reply 2

[不等式] $(a^3+b^3+c^3)(1/a^2+1/b^2+1/c^2)\ge3$

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-6-9 23:30 |Read mode
Last edited by isee 2020-6-10 18:35深圳20200609二模不等式选讲

已知$a$,$b$,$c$为正实数,且满足$a+b+c=1$.
证明:
(1)$\abs{a-\frac 12}+\abs{b+c-1}\geqslant \frac 12$;

(2)$\left(a^3+b^3+c^3\right)\left(\frac 1{a^2}+\frac 1{b^2}+\frac 1{c^2}\right)\geqslant 3$.

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2020-6-9 23:36
Last edited by isee 2020-6-9 23:42相比论坛的不等式,这仅仅是入门级了。

(1)$$\abs{a-1/2}+\abs{b+c-1}\geqslant \abs{a+b+c-3/2}\geqslant 1/2.$$


但这个(2)我还是想了好几分钟,才有门路:

(2)$$\left(a^3+b^3+c^3\right)\left(\frac 1{a^2}+\frac 1{b^2}+\frac 1{c^2}\right)\geqslant 3abc(1/a^2+1/b^2+1/c^2)\geqslant 3\left(\frac {bc}a+\frac {ac}b+\frac {ab}c\right)\geqslant 3(a+b+c)=3.$$

还好的是$\mathrm\LaTeX$代码还记得,就是经常缺个字母~

这对文科生,还是难的,Q了下kuing,kuing回先$1/a^2+1/b^2+1/c^2\geqslant 1/ab+1/bc+1/ca$,再乘,嗯,果然顺些~

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2020-6-16 10:20
Last edited by 敬畏数学 2020-6-18 18:31权方和不等式一步即可。$ (a^3+b^3+c^3)(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}) =(\dfrac{a^3}{1^2}+\dfrac{b^3}{1^2}+\dfrac{c^3}{1^2})(\dfrac{1^3}{a^2}+\dfrac{1^3}{b^2}+\dfrac{1^3}{c^2})\geqslant \dfrac{(a+b+c)^3}{(1+1+1)^2}\cdot \dfrac{(1+1+1)^3}{(a+b+c)^2}=3$

Mobile version|Discuz Math Forum

2025-5-31 11:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit