Forgot password?
 Register account
View 1783|Reply 3

[几何] 两道平面几何题

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-6-11 12:29 |Read mode
1.圆$O_1,O_2$交于A,B,一条外公切线切圆$O_1,O_2$于$T_1,T_2$,过B作$T_1T_2$平行线再交圆$O_1,O_2$于E,F,过A作AB垂线交EF于C,ABEM,ABFN为调和四边形,求证:圆CMN与$T_1T_2$相切
QQ浏览器截图20200531110641.png
2.三角形ABC中O为外心,AD,BE,CF是高,EF交BC于K,M为AD中点,CG∥AD交AB于G,求证OM⊥KG
QQ浏览器截图20200531110641.png

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-6-11 12:36
Last edited by hbghlyj 2020-6-11 12:512.先来个三线坐标爆算的方法
设AA'为圆O的直径,只需证A'D⊥KG
$A'(-\cos B\cos C,\cos B,\cos C)$
$D(0,\cos C,\cos B)$
$K(0,-\cos C,\cos B)$
$G(1,-\cos C,0)$
判定直线$l\alpha+m\beta+n\gamma=0,l'\alpha+m'\beta+n'\gamma=0$垂直有两个公式:
$ll'+mm'+nn'-(mn'+m'n)\cos A-\cdots=0$
$\left(\frac{na-lc}{ma-lb}+\cos A\right)\left(\frac{n'a-l'c}{m'a-l'b}+\cos A\right)=-\sin^2 A$
将$A'D\left\{\cos ^2B-\cos ^2C,\cos ^2B \cos C,-\cos B \cos ^2C\right\}$
$KG:\{\cos B \cos C,\cos B,\cos C\}$代入第一个公式,展开括号就是0,就证完了
$\cos^3B \cos C-\cos B \cos^3C+\cos B \cos C \left(\cos^2B-\cos^2C\right)-\cos B \left(\cos C \left(\cos^2B-\cos^2C\right)-\cos^2B \cos^3C\right)-\cos C \left(\cos B \left(\cos^2B-\cos^2C\right)+\cos^3B \cos^2C\right)=0$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-6-12 22:46
1.以B为中心,AB为半径反演,
M'为AE'中点,N'为AF'中点,AC'⊥E'F',所以$\odot CMN$变为$\triangle AE'F'$的九点圆
$T_1T_2$变为$\triangle AE'F'$的内切圆或旁切圆
由费尔巴哈定理,$\triangle AE'F'$的内切圆或旁切圆与九点圆相切,即得证
QQ图片20200607000557.jpg

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-6-12 22:49
2.取AB,AC中点J,L,过A作KG平行线交CG,BC于R,S,那么△OJL~△AGC,
要证OM⊥GH,只需证OM⊥AR,只需证△OLM~△ACR,只需证R分CG的比等于M分IJ的比,只需证S为DK中点
然后怎么做呢

Mobile version|Discuz Math Forum

2025-5-31 10:40 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit