Forgot password?
 Register account
View 1483|Reply 2

[几何] 一道以笛卡尔卵形线为背景的最值

[Copy link]

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2020-6-11 21:57 |Read mode
已知$\sqrt{(x-1)^2+y^2}+2\sqrt{(x+1)^2+y^2}=6$求$x^2+y^2$的最大值与最小值。

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2020-6-11 22:20
用中线长公式就行了吧,变成二次函数,变量范围用三边关系确定一下

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-6-12 12:41
Last edited by hbghlyj 2020-6-12 13:06A(1,0),B(-1,0),PA+2PB=6,求$PO^2$的最值
由中线长公式,$PA^2+PB^2=2(PO^2+1)$,由柯西不等式$(PA^2+PB^2)(1^2+2^2)\ge(PA+2PB)^2,PA^2+PB^2\ge \frac{36}5,PO^2\ge\frac{13}5$
在△PAB中PA-PB>AB=2,$27(PA^2+PB^2)=7(PA+2PB)^2+24(PA-PB)^2-(2PA-5PB)^2,\therefore PO^2\le \frac12\frac{7·6^2+24·2^2}{27}-1=\frac{49}9$当P在AB延长线上取得最大值

Mobile version|Discuz Math Forum

2025-5-31 10:42 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit