Forgot password?
 Register account
View 1460|Reply 2

[数论] 存在无穷多个正整数n,使得$n^2+1|n!$

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-6-17 00:01 |Read mode
Last edited by hbghlyj 2020-6-17 00:17存在无穷多个正整数n,使得$n^2+1|n!$
法①pell方程$n^2+1=5y^2(y\in\mathbf N_+,y\ge6)$有解(n,y)=(2,1),故有无穷多组正整数解,满足$y>5$的亦有无穷多组.
$n^2+1=5y^2\ge4y^2+1\Rightarrow n\ge2y,5<y<2y\le n$,即$n^2+1$是互不相同的<n的数之积,于是任取一组解即满足$n^2+1|n!$
法②令$n=2(5k+1)^2(k\in\mathbf N_+),$则$n^2+1=5(10k^2+6k+1)(50k^2+10k+1),5<10k^2+6k+1<50k^2+10k+1<n$,即$n^2+1$是互不相同的<n的数之积,于是$n^2+1|n!$
法③令$n=4k^2+2k+1(k\in\mathbf N_+),$则$n^2+1=2 \left(2 k^2+2 k+1\right) \left(4 k^2+1\right),2<2 k^2+2 k+1<4 k^2+1<4k^2+2k+1$,即$n^2+1$是互不相同的<n的数之积,于是$n^2+1|n!$

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

郝酒 Posted 2020-6-17 09:18
刚说这题我听人讲过,搬运个答案。不想你都给出来啦,还比我听的多一种:)
②③感觉差不多,感觉可以选多种的。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-6-17 12:26
回复 2# 郝酒
请问像②③这种分解式有通式吗?

Mobile version|Discuz Math Forum

2025-5-31 10:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit