Forgot password?
 Create new account
View 875|Reply 2

这个极限怎么算的???

[Copy link]

1

Threads

0

Posts

5

Credits

Credits
5

Show all posts

mathismath Posted at 2020-6-24 14:31:12 |Read mode
1.jpg

万能的版友们,这个极限的计算过程中从红框到篮框用了什么公式定理,实在迷惑呀。。。

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2020-6-25 17:24:12
我也看不懂……

我的做法会是这样:
\begin{align*}
&(a+1)x+1-\sqrt{(a-1)^2x^2+2(a+1)x+1}\\
={}&\frac{[(a+1)x+1]^2-[(a-1)^2x^2+2(a+1)x+1]}{(a+1)x+1+\sqrt{(a-1)^2x^2+2(a+1)x+1}}\\
={}&\frac{4ax^2}{(a+1)x+1+\sqrt{(a-1)^2x^2+2(a+1)x+1}},
\end{align*}所以当 `x\to0` 时
\[(a+1)x+1-\sqrt{(a-1)^2x^2+2(a+1)x+1}\sim2ax^2,\]因此
\[\lim_{K\to0}\text{原式}=\lim_{K\to0}\frac{2a(czK)^2}{z\cdot2a(cK)^2}=z.\]

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2020-6-25 19:06:37
$\sqrt{1+AK+BK^2}=1+\binom{1/2}{1}(AK+BK^2)+\binom{1/2}{2}(AK+BK^2)^2+o(K^2)$
$=1+\frac{1}{2}AK+\left(\frac{1}{2}B-\frac{1}{8}A^2\right)K^2+o(K^2)$

手机版Mobile version|Leisure Math Forum

2025-4-21 14:22 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list