Forgot password?
 Register account
View 1668|Reply 5

[几何] 动点

[Copy link]

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

lrh2006 Posted 2020-6-26 18:03 |Read mode
如图,已知点P为边长等于4的正方形所在平面外的动点,|PA|=2,PA与平面ABCD所成角等于45°,则∠BPD的大小可能是()
A.π/6    B.π/3    C.π/2    D.5π/6 (1).png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-6-27 02:14
直接用代数计算具体范围算了,计算量也不大……

以 `A` 为原点建空间系使得 `B(4,0,0)`, `D(0,4,0)`,依题意可设 `P\bigl(x,y,\sqrt2\bigr)`,其中 `x^2+y^2=2`,那么
\begin{align*}
\cos\angle BPD&=\frac{\vv{BP}\cdot\vv{DP}}{BP\cdot DP}\\
&=\frac{(x-4)x+y(y-4)+2}{\sqrt{(x-4)^2+y^2+2}\cdot\sqrt{x^2+(y-4)^2+2}}\\
&=\frac{1-x-y}{\sqrt{(5-2x)(5-2y)}}\\
&=\frac{1-x-y}{\sqrt{25-10(x+y)+2(x+y)^2-2(x^2+y^2)}}\\
&=\frac{1-t}{\sqrt{21-10t+2t^2}},
\end{align*}其中 `t=x+y\in[-2,2]`,易知上式在此区间上递减,由此可得
\[\cos\angle BPD\in\left[ -\frac13,\frac37 \right].\]

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2020-6-28 10:18
回复 2# kuing


    对我这种学渣来说,不简单诶,为什么递减,看不出来。。。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-6-28 14:25
回复 3# lrh2006

求个导呗

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2020-6-28 21:51
回复 4# kuing


    好吧,我用了洪荒之力,终于知道递减了,怎么你就易知呢,哎

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2020-6-28 22:45
回复 5# lrh2006

因为我会作弊呀

Mobile version|Discuz Math Forum

2025-5-31 11:07 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit