Forgot password?
 Register account
View 1605|Reply 4

[不等式] SOP7——n 元分式不等式

[Copy link]

46

Threads

323

Posts

2834

Credits

Credits
2834

Show all posts

业余的业余 Posted 2020-7-4 20:43 |Read mode
证明:若 $a_i\geqslant 1, i=1,2,\cdots,n,$ 且 $\displaystyle \sum_{i=1}^n a_i=\cfrac {n(n+1)}2,$ 则\[\sum_{i,j=1}^n\cfrac{a_i^2a_j^2}{a_i+a_j-1}\geqslant n^3.\]

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2020-7-4 21:50
柯西就行了吧,不过好像除了n=1外都取不了等,有没有抄错题?

46

Threads

323

Posts

2834

Credits

Credits
2834

Show all posts

 Author| 业余的业余 Posted 2020-7-5 01:13
确认了一下,题目确实是这样的。难度对你来说肯定偏低

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-7-5 02:01
记 `S=\sum_{i=1}^na_i`,有
\begin{align*}
\sum_{i,j=1}^na_ia_j&=S^2,\\
\sum_{i,j=1}^n(a_i+a_j-1)&=2nS-n^2,
\end{align*}故由 CS 有
\[\sum_{i,j=1}^n\frac{a_i^2a_j^2}{a_i+a_j-1}\geqslant\frac{S^4}{2nS-n^2},\]代入条件即 `S=n(n+1)/2`,右边就化为 `n\left(\frac{n+1}2\right)^4`,这比 `n^3` 大多了……

46

Threads

323

Posts

2834

Credits

Credits
2834

Show all posts

 Author| 业余的业余 Posted 2020-7-5 02:49

Mobile version|Discuz Math Forum

2025-5-31 11:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit